845 (1969).

(12) See references in D. G. Gorenstein and D. Kar, J. Am. Chem. Soc., 99, 672 (1977).
(13) W. F. Bailey and G. L. Eliel, J. Am. Chem. Soc., 96, 1798 (1974)
(14) A. T. Blomquist and J. Wolinsky, J. Am. Chem. Soc., 79, 6025 (1957).
(15) D. G. Gorenstein. J. Am. Chem. Soc., 99, 2254 (1977).
(16) (a) M. Tsuboi, S. Takahashi, Y. Kyoguku, H. Hayatsu, T. Ukita, and M. Kainosho, Science, 166, 1504 (1969); (b) W. Kung, P. E. Marsh, and M. Kai-
nosho, J. Am. Chem. Soc., 99. 5471 (1977).
(17) W. G. Bentrude, H. W. Tan, and K. C. Yee, J. Am. Chem. Soc., 97, 574 (1975).
(18) J. A. Mosbo, Org. Magn. Reson., 6, 281 (1978)
(19) G. S. Bajwa, W. G. Bentrude, N. S. Pantaleo, M. G. Newton, and J. H. Hargis, J. Am. Chem. Soc., 101, 1602 (1979)
(20) R. O. Hutchins, B. E. Maryanoff, M. J. Castillo, K. D. Hargrave, and A. T. McPhail, J. Am. Chem. Soc., 101, 1600 (1979).

Host-Guest Complexation. 18. Effects on Cation Binding of Convergent Ligand Sites Appended to Macrocyclic Polyethers

Roger C. Helgeson, Gary R. Weisman, John L. Toner, Thomas L. Tarnowski, Y. Chao, James M. Mayer, and Donald J. Cram*
Contribution from the Department of Chemistry, University of California at Los Angeles, Los Angeles, California 90024. Received January 17, 1979

Abstract

Syntheses are reported for 16 new macrocyclic polyether ligand systems which contain potentially convergent side chains containing additional binding sites. The free energies of association of these systems in CDCl_{3} at $25^{\circ} \mathrm{C}$ with $\mathrm{Li}^{+} . \mathrm{Na}^{+}$. $\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and $t-\mathrm{BuNH}_{3}{ }^{+}$picrates were determined. The structures of these hosts are indicated by the following abbreviations: E is $\mathrm{CH}_{2} \mathrm{CH}_{2}$; D is I, I'-dinaphthyl attached to two macroring oxygens at its $2,2^{\prime}$ positions and to two substituents at its $3,3^{\prime}$ positions: T is $1,1^{\prime}$-bitetralyl attached to two macroring oxygens at its $2,2^{\prime}$ positions and to two substituents in its $3,3^{\prime}$ positions; Ur is the cyclic urea unit, $\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}(\mathrm{CO}) \mathrm{NCH}_{3} ; \mathrm{Py}$ is α-pyridyl; Bz is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$. The hosts prepared and examined were $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (3), $(\mathrm{OCH})_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (5), $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (6). $\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2}-$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(7),\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(9)$, $\left(\mathrm{UrCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(11),\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$, $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEOE})_{2} \mathrm{O}(13),\left(\mathrm{PySCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(14),\left(\mathrm{PyCH}_{2} \mathrm{OCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (15), [(EtO$)_{2}-$ $\left.\mathrm{OPCH}_{2}\right]_{2} \mathrm{~T}(\mathrm{OEOE})_{2} \mathrm{O}(20)$, cis- $(\mathrm{BzOCH})_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(22)$, trans- $\left.(\mathrm{BzOCH})_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(23)$, cis- (o- $\left.\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2}-$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(24)$, trans- $\left(0-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(25)$, and $\left.\mathrm{E}(\mathrm{OEOEOCH})_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (26). Noncyclic model compounds were also prepared: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(1)$ and $\left[(\mathrm{ErO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}\left(\mathrm{OCH}_{3}\right)_{2}(17)$. The free energies of as. sociation $\left(-\Delta G^{\circ}\right)$ of these compounds with various picrate salts were compared with one another and with those of known hosts, $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{D}(2), 2,3$-naphtho- 18 -crown-6 (21), and dicyclohexyl-18-crown-6. The highest $-\Delta G^{\circ}$ value ($\mathrm{kcal} / \mathrm{mol}$) observed involved $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$ and $\mathrm{Na}^{+}(12.4)$. and the lowest. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(\mathbf{1})$ and t - $\mathrm{BuNH}_{3}{ }^{+}$(3.38), as complexing partners. The $-\Delta G^{\circ}{ }_{\text {av }}$ of association (kcal/mol) with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$, and $\mathrm{NH}_{4}{ }^{+}$ picrates allowed the hosts to be ranked as general ligand systems. Values of $-\Delta\left(\Delta G^{\circ}\right)_{\text {max }}$ (the difference in free energies of the best and poorest bound of these six picrate salts) allowed the ligand systems to be graded with regard to ion selectivity. Values of $-\Delta(\Delta G)_{t-B u+H_{3}+}^{\wedge H^{+}}$allowed the ligand systems to be judged with regard to their capacity for structural recognition of $\mathrm{NH}_{4}{ }^{+}$vs. $t-\mathrm{BuNH} 3_{3}{ }^{+}$ions. With respect to all three parameters, the $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$ system ranked the highest. The location, binding, and steric properties of the two $\mathrm{P} \rightarrow \mathrm{O}$ oxygens in this ligand system appear responsible for its superior properties

Previous papers in this series dealt with the synthesis and complexing properties of neutral host compounds toward metal, ammonium, and alkylammonium picrate salts in $\mathrm{CHCl}_{3} .{ }^{2}$ Binding sites incorporated directly into the macroring systems include ethyleneoxy, m-xylyl, ${ }^{2 a} 2,6$-substituted anisyl, ${ }^{2 d} 2,6$-substituted phenylcarbomethoxy, ${ }^{2 b} 2,6$-substituted phenylcarboxy,. ${ }^{2 b} 2,6$-substituted pyridine, 2,6 -substituted pyridine oxide, ortho,ortho'-substituted arylphosphoryl, and $N \cdot N^{\prime}$-tetrasubstituted urea units. ${ }^{2 e}$ Two types of negatively charged macrocycles have been designed and prepared for complexation of cations. In one type, acetylacetonide units incorporated in the ring systems were examined. ${ }^{3 a}$ In a second study, carboxylate groups terminating side chains grafted to the macroring were designed and investigated. ${ }^{3 \mathrm{~b}}$

This paper reports the design, syntheses, and complexing properties of 16 new macrocyclic polyethers in which additional convergent binding sites were appended to the macroring system. To provide for convergence of the extra binding sites, three strategies were employed. The first employed the rigid 1,1 '-binaphthyl unit bonded to oxygens of the macroring system in its $2,2^{\prime}$ positions. The $3,3^{\prime}$ positions were substituted with side chains (A in formulas 1 and 11). The planes of the two naphthalene rings in CPK molecular models are roughly perpendicular and tangential to the best plane of the macroring,

11
as indicated in formulas 1 and II. In proper conformations, the termini of appropriate A side chains can locate on an axis that passes through the center of the macroring. Thus. additional binding sites may be strategically positioned on either side of the central binding cavity. In all systems reported here, the two side chains are identical. so the systems possess a C_{2} axis. Al-
though the enantiomer of the R configuration is depicted both in I and its projection formula II. the compounds prepared were racemates.

In the second type of system, cis and trans isomers of 18-crown- 6 substituted in their 2,3 positions with like groups were prepared and examined. In models of the compounds prepared, side chains trans to one another in the proper conformation can place additional binding sites on either side of the central hole. The substances thus possess C_{2} axes. In the cis isomers, only substituents of one side chain at a time can be so located. Thus a comparison of the binding properties of diastereomeric pairs appeared interesting.

The third type of host prepared and studied was an 18-crown- 6 with a cis-fused 20 -crown- 6 macroring, the two rings of which shared a CHCH group. In the all-gauche conformation of the $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ units, the two macrorings form a set of "jaws" conformationally flexible enough in molecular models to close on a guest ion. ${ }^{4}$

The general objective of these studies is to identify the varieties of complementary host-guest relationships in complexation. The specific goals are manifold: to identify the best ligands for the various types of cations; to determine the effects of different molecular organizations of binding sites on binding abilities; to develop feasibility in synthesis of systems that place ligands in positions relative to one another so that they might act cooperatively without extensive conformational reorganization; to determine the usefulness of molecular models in predicting complementary vs. noncomplementary host-guest relationships.

Results

Syntheses. Compounds 1-3 were required as standard hosts that did not contain appended side chain ligand sites. Com-

!. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}_{2}\left(\mathrm{OEOEOCH}_{3}\right)_{2}$

$$
\begin{aligned}
& \text { 2. } n=1, A=H, 0,0 E 0 E O)_{2} E \\
& \text { 3, } n=1, A=\mathrm{CH}_{3},\left(\mathrm{CH}_{3}\right), \mathrm{O}(0 \mathrm{OEOO})_{2} \mathrm{E} \\
& 4, n=1, A=\mathrm{CH}_{2} \mathrm{OH} \\
& \underline{5}, n=1 . A=\mathrm{CHO},(\mathrm{OCH})_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{E} \\
& \text { 6. } n=1, A=\mathrm{CO}_{2} \mathrm{CH}_{3},\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{E} \\
& ?, n=1, A=\mathrm{CO}_{2} \mathrm{H},\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{O}(0 \mathrm{OEEO})_{2} \mathrm{E} \\
& \text { 8. } n=1, A=C N \\
& \text { 9, } n=1, A=\mathrm{COCH}_{3},\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(O E O E O)_{2} \mathrm{E} \\
& \text { 10, } n=1, A=\mathrm{CH}_{2} \mathrm{Cl} \\
& \text { I1, } n=1, A=\mathrm{CH}_{2} \underbrace{\mathrm{~N}^{\prime \prime} \mathrm{C}^{\prime}} \mathrm{NCH}_{3},(\mathrm{UrCH})_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{E} \\
& \text { 12. } n=1, A=\mathrm{CH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2},\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{E} \\
& \text { 13, } n=2, A=\mathrm{CH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2},\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{O}(\mathrm{OEOEOE})_{2} \mathrm{O} \\
& \left.14, n=1, A=\mathrm{CH}_{2} 5-\mathrm{Q}\right),\left(\mathrm{PySCH}_{2}\right)_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{E} \\
& \text { 15, } n=1, A=\mathrm{CH}_{2} \mathrm{OCH}_{2}-\widehat{\mathrm{O}},\left(\mathrm{PyCH}_{2} \mathrm{OCH}_{2}\right)_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{E}
\end{aligned}
$$

pound 1 was prepared (64%) by the reaction of $\mathrm{KOH}-$ $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}^{5}$ with $2,2^{\prime}$-dihydroxy-3,3'-dimethyl-1,1'-binaphthyl. ${ }^{6}$ The reaction of KOH -pentaethylene glycol ditosylate ${ }^{2 b}$ with the same diol gave 3 (44\%). Compound 2 was available from an earlier study. ${ }^{5}$

Macrocyclic diol ${ }^{3 \mathrm{~b}} 4$ served as the starting material for cycles 5-12, 14, and $\mathbf{1 5}$. Oxidation of $\mathbf{4}$ with activated $\mathrm{MnO}_{2}{ }^{7}$ gave dialdehyde 5 (88%), which with $\mathrm{MnO}_{2}{ }^{7} \mathrm{NaCN}$. $\mathrm{CH}_{3} \mathrm{OH}$, and AcOH gave diester 6 (75\%). Conventional hydrolysis of 6 gave diacid 7 (94\%). Dialdehyde 5 with $\mathrm{HONH}_{3} \mathrm{Cl}, \mathrm{NaO}_{2} \mathrm{CH}$, and $\mathrm{HO}_{2} \mathrm{CH}^{9}$ gave nitrile 8 (84\%), which when treated with $\mathrm{CH}_{3} \mathrm{Li}$ gave diacetyl compound 9 (35\%). Treatment of diol $\mathbf{4}$ with $\mathrm{SOCl}_{2}-\mathrm{C}_{6} \mathrm{H}_{6}$ gave dichloride $10(92 \%)$. With NaH and N-methyl N, N^{\prime}-trimethyleneurea, ${ }^{10} 10$ gave the macrocycle with the two urea side chains, $11(70 \%)$. Dichloride 10 when heated with (EtO$)_{3} \mathrm{P}$ gave the macrocycle with two appended alkylphosphinate ester side chains, 12 (90%). A similar sequence of conversions of bisalcohol ${ }^{3 \mathrm{~b}}$ to bischloride ${ }^{3 \mathrm{~b}}$ to bisalkylphosphinate ester 13 (97%) was employed in the higher oligomeric series whose macrocycles contained seven oxygens. Dichloride 10 when treated with $\mathrm{NaOH}-2$-mercaptopyridine gave 14 (36%), which contained two side chains terminated by the α-thiapyridine group. When treated with 2-hydroxymethylpyridine. dichloride 10 gave macrocycle $15(66 \%)$, whose side chains are terminated with two pyridine groups.

For purposes of differentiating between the binding contributions of the macroring system and the phosphinate ester side chains, compound 17 was needed. In 17, the macrocycle is absent, but the side chains are present. Accordingly. 2.2^{\prime} -dihydroxy-3,3'-bis(hydroxymethyl)-1,1'-binaphthyl ${ }^{6}$ was methylated with $\mathrm{CH}_{3} 1-\mathrm{K}_{2} \mathrm{CO}_{3}$ to give diol 16 (90\%). Treatment of 16 with $\mathrm{SOCl}_{2}-\mathrm{C}_{6} \mathrm{H}_{6}$ produced the corresponding

18. $A=H$
19. $A=\mathrm{CH}_{2} \mathrm{Cl}$
20. $A=P(0)(\text { OEt })_{2},\left[(E t O)_{2}{ }^{00 \mathrm{OH}}{ }_{2}\right]_{2}^{T} \cdot(0 E O E)_{2} 0$

21. Nap(UEOEO) ${ }_{2} \mathrm{E}$
bis(chloromethyl) compound (89%). which when heated with (EtO$)_{3} \mathrm{P}$ gave 17 (80%).

A comparison of the complexing properties of 17-, 20- and 23-membered macrocyclic ethers containing the $\mathrm{CH}_{2} \mathrm{P}(\mathrm{O})$ $(\mathrm{OEt})_{2}$ side chains appeared desirable. The syntheses of examples ($\mathbf{1 2}$ and 13) of the latter two compound types are described above. The lower oligomer of diol 4 ($n=0$ in general formula) had been obtained only in very poor yields. ${ }^{3 \mathrm{~b}}$ so a synthesis of $\mathbf{2 0}$, which contains the similarly shaped $1,1^{\prime}$-bitetralyl in place of the I.1'-binaphthyl unit, was devised. Attempts to chloromethylate the available binaphthyl-17-crown- 5^{5} led to products in which both the 3 and 6 positions of the dinaphthyl nucleus were substituted. To avoid this problem, binaphthyl-17-crown-5 was reduced with $\mathrm{H}_{2}-\mathrm{Pt}$ to 18 (95\%). chloromethylation of which with AcOH -parafor-maldehyde- HCl gave dichloride 19 (67%), which with $(\mathrm{EtO})_{3} \mathrm{P}$ gave $20(84 \%)$. Cycle 21, also wanted for comparison purposes, was available from another study. ${ }^{5}$

An inspection of CPK molecular models of diastereomeric compounds $\mathbf{2 2}$ and $\mathbf{2 3}$ indicated that in the trans isomer the two

ether oxygens of the side chains could in proper conformations participate simultaneously in binding metal cations located in the hole. In models of the cis isomer, only one side-chain oxygen at a time can do this without generating one antiarrangement of the oxygens of the macroring. The two diastereomers were synthesized from (R, S) - and (S, S)-tartaric acids as the initial starting materials. Treatment of each acid with $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{OH}$, and TsOH gave the diastercomeric dimethyl tartrate 2,3 -acetonides ${ }^{11}$ (85-95\%), which were reduced with LiAlH_{4} to the corresponding diastereomeric 1.2,3,4-butanetetrol 2,3-acetonides ${ }^{12}$ (63-79\%). The terminal hydroxyl groups of these compounds were benzylated with $\mathrm{NaH}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$ (94% for each diastereomer), and the resulting ketals hydrolyzed (93% for each diastereomer) to the corresponding R, S and S, S isomers of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}$ $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. The R, S diol with $\mathrm{NaH}-\mathrm{THF}$-pentaethylene glycol ditosylate ${ }^{2 b}$ gave cis macrocycle 22 (33\%), whereas the S, S diol with $\mathrm{NaH}-\mathrm{DMF}$ pentacthylene glycol ditosylate ${ }^{2 b}$ gave trans macrocycle 23 (35\%). After this work was completed, others announced the preparation of 18 -crown- 6 systems, two of whose ethylene glycol units were replaced with units synthesized from (S.S)-tartaric acid. ${ }^{13}$

Hosts 24 and 25 are diastereomeric 18 -crown- 6 systems in which two o-chlorophenyl groups are substituted for vicinal hydrogens of one ethylene group. In molecular models of the (all-gauche) trans isomer, appropriate conformations of the two aryl groups place one chloride on one side and the second chlorine on the opposite side of the hole of the macroring at the same time. In the cis isomer, only one Cl can occupy that convergent position without developing an anti conformation for one of the oxygens of the OCHArCHArO group. The macrocycles were prepared from the dl - and meso-o, o^{\prime}-dichlorohydrobenzoins as starting materials, which in turn were prepared by reduction of $o .0^{\prime}$-dichorobenzoin ${ }^{14}$ with NaBH_{4}. The diastereomers were separated. As expected, ${ }^{15}$ the meso isomer was present as the major component. The racemate was identified by its total enantiomeric resolution through the
strychnine salt of its acid phthalate. ${ }^{16}$ Treatment of the racemic diol with THF-KOH-pentaethylene glycol ditosylate ${ }^{2 b}$ gave the trans isomer, 25 (68\%), while with THF-NaH-pentaethylene glycol ditosylate the meso diol gave cis isomer 24 (35\%).

The synthesis of the "jaws-like" host $\mathbf{2 6}$ involved treatment of meso-1,2,3,4-butanetetrol 2,3-acetonide with NaH -DMF-pentaethylene glycol ditosylate ${ }^{2 b}$ to give macrocycle 27 (35\%). When treated with acid, 27 gave 28 (95%), ring

closure of which with NaH -DMF-pentaethylene glycol ditosylate ${ }^{2 b}$ gave 26 (35\%).

In the purification of many of the hosts, gel permeation chromatography was used to separate the various cyclic oligomers formed in the ring-closing reactions. The retention times of cyclic oligomers differed markedly from one another, whereas cycles of similar molecular dimensions gave similar retention volumes. Mass spectral molecular ions, coupled with retention volume correlations, established the molecular weights of the desired compounds.

Association Constants and Free Energies of Association between Ligand Systems and Metal, Ammonium, and Alkylammonium Picrates. Association constants (K_{a}, defined in eq 1) for hosts (H) and guest picrate salts were determined in CDCl_{3} at $24-26^{\circ} \mathrm{C}$. The previously described extraction technique was used in which $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{NH}_{4}{ }^{+}$, $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and $t-\mathrm{BuNH}_{3}{ }^{+}$picrates in $\mathrm{H}_{2} \mathrm{O}$ were extracted with CDCl_{3} both in the presence and absence of host. ${ }^{2 \text { dee. }}$ The extraction constants (K_{c}) defined in eq 2 and the distribution constants (K_{d}) defined in eq 3 were determined from the absorbances at 380 nm in the UV spectra of the $\mathrm{H}_{2} \mathrm{O}$ and CDCl_{3} layers at equilibrium. The molar ratio of picrate ion to host in the organic layer is indicated by the symbol R. Values of K_{a} were calculated from K_{e} and K_{d} and eq 4 , and $-\Delta G^{\circ}$ values from $K_{i 1}$ values and eq 5 . Table I records the data.

$$
\begin{equation*}
\left[\mathrm{M}^{+} \mathrm{Pic}^{-}\right]_{\mathrm{CDCl}_{3}}+[\mathrm{H}]_{\mathrm{CDCl}_{3}} \stackrel{K_{a}}{\leftrightarrows}\left[\mathrm{M}^{+} \cdot \mathrm{H} \cdot \mathrm{Pic}^{-}\right]_{\mathrm{CDCl}_{3}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\mathrm{M}^{+}\right]_{\mathrm{H}_{2} \mathrm{O}}+\left[\mathrm{Pic}^{-}\right]_{\mathrm{H}_{2} \mathrm{O}}+[\mathrm{H}]_{\mathrm{CDCl}_{3}}} \\
& \qquad \stackrel{K_{\mathrm{C}}}{\leftrightarrows}\left[\mathrm{M}^{+} \cdot \mathrm{H} \cdot \mathrm{Pic}^{-}\right]_{\mathrm{CDCl}_{3}} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\left[\mathrm{M}^{+}\right]_{\mathrm{H}_{2} \mathrm{O}}+\left[\mathrm{Pic}^{-}\right]_{\mathrm{H}_{2} \mathrm{O}} \stackrel{K_{\mathrm{d}}}{\leftrightarrows}\left[\mathrm{M}^{+} \mathrm{Pic}^{-}\right]_{\mathrm{CDCl}_{3}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
K_{\mathrm{a}}=K_{\mathrm{e}} / K_{\mathrm{d}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\Delta G^{\circ}=-R T \ln K_{\mathrm{a}} \tag{5}
\end{equation*}
$$

The values for the parameters are reported to more figures than are significant until comparisons are made. Values for K_{a} have precisions that vary with $R_{\mathrm{CDCl}_{3}}$ between about ± 14 and $\pm 47 \%$, and values for $-\Delta G^{\circ}$ between about 1.4 and 2.6%. This easily applied, low-precision method provides reasonable estimates of association free energies useful for correlating the effects of structural changes in host and guest on binding properties in CDCl_{3}.

For general comparison purposes. Table I also reports $-\Delta G^{\circ}$ av values for each host binding in CDCl_{3} the $\mathrm{Li}^{+}, \mathrm{Na}^{+}$, $\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$, and NH_{4}^{+}picrate ${ }^{-}$salts. Also reported is the $-\Delta\left(\Delta G^{\circ}\right)_{\max }$ value for each host, which equals the difference between the $-\Delta G^{\circ}$ for the most strongly bound minus $-\Delta G^{\circ}$ for the least strongly bound of these six salts.

Discussion

Effects on Free Energies of Association of Changes in Structure of Ligand Systems Containing the Binaphthyl Unit. The $-\Delta G^{\circ}{ }_{\text {av }}$ values provide a general measure of each host's ability to complex spherical $\left(\mathrm{M}^{+}\right)$or near-spherical $\left(\mathrm{NH}_{4}{ }^{+}\right)$ cations of a wide range of ionic diameters. The $-\Delta\left(\Delta G^{\circ}\right)_{\max }$ values provide a general measure of the ability of each host to differentially complex ions of different diameters. Ligand systems $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}$ (1) and $\left(\mathrm{CH}_{3}\right)_{2-}$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (3) differ only in the sense that the former contains two hydrogens in place of a carbon-carbon bond which completes a ring system in the latter. The system whose ligand sites are organized by the macroring gives a $-\Delta G^{\circ}$ av value of $8.5 \mathrm{kcal} / \mathrm{mol}$. which is $2.8 \mathrm{kcal} / \mathrm{mol}$ higher than that of its noncyclic analogue whose $-\Delta G^{\circ}{ }_{\text {av }}$ value is $5.7 \mathrm{kcal} / \mathrm{mol}$. The difference in $-\Delta\left(\Delta G^{\circ}\right)_{\max }$ for the two systems is more striking. Macrocycle $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(3)$ differentiates maximally between the six ions by $4.5 \mathrm{kcal} / \mathrm{mol}$. whereas its open-chain analogue. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEOCH})_{2}(1)$, differentiates by only $0.5 \mathrm{kcal} / \mathrm{mol}$. This organization of the ligand sites prior to complexation is important both to general and to differential complexation. Interestingly, these two ligand systems have about the same affinity for Li^{+}ion, for which neither is organized $\left(-\Delta G^{\circ} \sim 5.9 \mathrm{kcal} / \mathrm{mol}\right)$. However, they differ by $4.5 \mathrm{kcal} / \mathrm{mol}$ in their affinities for K^{+}, for which the cycle is superbly organized during complexation.

The two methyl groups substituted in the 3, 3^{\prime} positions of the naphthalene rings of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (3) play an important role in determining both its general and differential binding ability. Thus $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(3)$ provides a $-\Delta G^{\circ}$ av value of $1.4 \mathrm{kcal} / \mathrm{mol}$ and a $-\Delta\left(\Delta G^{\circ}\right)_{\max }$ value of $0.7 \mathrm{kcal} / \mathrm{mol}$ higher than is observed for its nonmethylated analogue, $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (2). An examination of molecular models of the two systems suggests that the effect of the two methyl groups is to force a conformation on the ArOCH_{2} groups in which the electron pairs of their inward-turned oxygens "line" part of the hole of the macrocycle. In $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (3) the CH_{3} of the $\mathrm{ArOCH} \mathrm{H}_{2}$ has no space available other than on the outside of the hole, whereas in $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathbf{2})$ other conformations are available.

Other substituents in the 3 position in models appear to play the same steric role as the CH_{3} group. Consistent with this visual observation of models is the experimental fact that for all $\mathrm{A}_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ systems binding any particular one of the cations, $\mathrm{Li}^{+}, \mathrm{Na}^{+}$, or K^{+}, the $-\Delta G^{\circ}$ value when A is hydrogen is lower than when A is any other group. Thus the binding of those ions small enough to "nest" in the hole of the macrocycle is helped by this enforced convergence of the electron pairs of oxygens. The ions, $\mathrm{NH}_{4}{ }^{+}$and Cs^{+}, are large and they "perch" on the cavity, and their binding is accordingly less sensitive to the electron pairs converging on the center of the hole.

Most of the A groups of the $\mathrm{A}_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ hosts are polar and contain functional groups potentially capable of providing additional binding sites for a cationic guest. The
question arises as to how much of the increased binding is due to the conformational effect on the macroring oxygens, and how much to the presence of additional binding sites. For these hosts, the A groups provide the following decreasing order of values of $-\Delta G^{\circ}{ }_{\mathrm{av}}(\mathrm{kcal} / \mathrm{mol}): \mathrm{CH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}(10.0) ; \mathrm{CH}_{2} \mathrm{SPy}$ (8.7); $\mathrm{CO}_{2} \mathrm{CH}_{3}$ (8.7): $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Py}$ (8.7): $\mathrm{CH}_{2} \mathrm{Ur}$ (8.7): CH_{3} (8.5): COCH_{3} (7.8); H (7.1). Interestingly, the A groups provide a somewhat similar decreasing order of values for $-\Delta\left(\Delta G^{\circ}\right)_{\max }(\mathrm{kcal} / \mathrm{mol}): \mathrm{CH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}$ (5.4); CH_{3} (4.5); $\mathrm{CH}_{2} \mathrm{SPy}$ (4.3): $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Py}$ (4.2); $\mathrm{CH}_{2} \mathrm{Ur}$ (4.1); H (3.8); COCH_{3} (2.3). Thus only when $\mathrm{A}=\mathrm{CH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}$ is the binding and discriminating ability of these hosts markedly better than when $\mathrm{A}=\mathrm{CH}_{3}$. The enhancement attributable to substituting two $\mathrm{PO}(\mathrm{OEt})_{2}$ for the two hydrogens of the CH_{3} groups amounts to $1.5 \mathrm{kcal} / \mathrm{mol}$ in $-\Delta G^{\circ}{ }_{\mathrm{av}}$ and to 0.9 kcal in $-\left(\Delta\left(\Delta G^{\circ}\right)_{\text {max }}\right.$. With the exception of COCH_{3}, the other polar groups have net effects on $-G^{\circ}{ }^{\circ}$ values not far from those of the nonpolar CH_{3} group. Although these latter polar groups may, and probably do, provide additional binding sites to the guest cations, what is gained by such contacts is possibly lost in freezing out rotational degrees of freedom in the complexation process.

Comparisons of the $-\Delta G^{\circ}{ }_{\mathrm{a} v}$ and $-\Delta\left(\Delta G^{\circ}\right)_{\max }$ values for the hosts whose A groups are COCH_{3} and $\mathrm{CO}_{2} \mathrm{CH}_{3}$ support this explanation. Of the polar groups represented, the ketone and ester oxygens provide the poorest ligands for metal ion binding both because of their electronic character and their inability to reach far enough to center their electron pairs on either side of the hole. The $\mathrm{CO}_{2} \mathrm{CH}_{3}$ group might act as a noncentered binding group in either of two conformations since either of its two oxygens might be used (with the $\mathrm{C}=\mathrm{O}$ group preferred). The COCH_{3} group can act as a binding site in only one conformation, and in that conformation its electron pairs are deconjugated from those of its attached naphthalene.

Molecular model examinations of $\left[\left(\mathrm{EtO}_{2}\right) \mathrm{OPCH}_{2}\right]_{2}-$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$ indicates that, with the four bulky and lipophilic EtO groups oriented away from the hole, the two $\mathrm{P} \rightarrow \mathrm{O}$ groups can fall on an axis which is normal to the best plane of the macroring and which passes through its center. Such a conformation provides a roughly spherical hole lined with 32 electrons associated with 8 oxygens. Although the electron pairs of the oxygens of $\left(\mathrm{UrCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(11)$ and of the nitrogens of $\left(\mathrm{PsSCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (14) and $\left(\mathrm{PyCH}_{2} \mathrm{OCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(15)$ can also center on either side of the hole, more conformations have to be frozen out in these arrangements than in $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12).

The noncyclic model compound, $\left[\left(\mathrm{EtO}_{2}\right)_{2} \mathrm{OPCH}_{2}\right]_{2}-$ $\mathrm{D}\left(\mathrm{OCH}_{3}\right)_{2}(17)$, possesses only those four binding sites that are attached to and organized by the binaphthyl group of the parent system. This model gave $-\Delta G^{\circ}{ }_{a v}=4.9 \mathrm{kcal} / \mathrm{mol}$. which is about half of the $10 \mathrm{kcal} / \mathrm{mol}$ observed for the parent cycle which contains eight binding sites. The model was much less discriminating toward ions since it gave $-\Delta\left(\Delta G^{\circ}\right)_{\text {muax }}=$ $1.8 \mathrm{kcal} / \mathrm{mol}$ compared to the $5.4 \mathrm{kcal} / \mathrm{mol}$ of the parent cycle.

The oligomer containing an additional ethylenoxy unit in its ring. $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEOE})_{2} \mathrm{O}(13)$, was almost as powerful and discriminating a host as its smaller relative, 12. It provided values for $-\Delta G^{\circ}{ }_{\text {iv }}$ and $-\Delta\left(\Delta G^{\circ}\right)_{\text {nuix }}$ of 9.8 and $4.8 \mathrm{kcal} / \mathrm{mol}$, respectively. As expected, this higher oligomer with its larger ring system was a better binder for the larger metal ions, Rb^{+}and Cs^{+}. by 2.4 and $1.4 \mathrm{kcal} / \mathrm{mol}$, respectively. than 12. However, the ideal organization of the six-oxygen macrocycle for binding three of the hydrogens of $\mathrm{NH}_{4}{ }^{+}$in a tripod arrangement is lost in the higher oligomer whose $-\Delta G^{\circ}$ value for that ion dropped by $2.5 \mathrm{kcal} / \mathrm{mol}$ compared to that of the parent host. The most striking difference between the two oligomers involved their binding of the smaller ion, Na^{+}.

Table I. Equilibrium and Free Energy Parameters for Association between Hosts and Metal or Ammonium Picrates in CDCl_{3} at $25^{\circ} \mathrm{C}$

ligand system		$\begin{gathered} \mathrm{M}^{+} \text {of } \mathrm{M}^{+} \\ \text {picrate }^{-} \\ \hline \end{gathered}$	$\mathrm{R}_{\mathrm{CDCl}_{3}{ }^{\text {b }}}$	$\begin{gathered} K_{\mathrm{a}} \times 10^{-3}, \\ \mathrm{M}^{-1} \end{gathered}$	$\begin{gathered} -\Delta G^{\circ} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{aligned} & -\Delta G^{\circ}{ }^{\mathrm{av},{ }^{\mathrm{c}}{ }^{\mathrm{c}}} \\ & \mathrm{kcal} / \mathrm{mol} \end{aligned}$	$\begin{gathered} \Delta\left(\Delta G^{\circ}\right)_{\max \cdot{ }^{d}}^{\mathrm{kcal} / \mathrm{mol}} \\ \hline \end{gathered}$
structure ${ }^{\text {a }}$	no.						
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEOCH})_{2}{ }^{\text {e }}$	$1{ }^{f}$	Li	0.0060	19	5.84		
		Na	0.0057	14.8	5.69		
		K	0.0112	20.2	5.88 \%	5.7	0.5
		Rb	0.0058	14.4	5.68	5.7	0.5
		Cs	0.0053	11.0	5.52		
		NH_{4}	0.0081	9.1	5.41)		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.0098	3.1	4.77		
		$t-\mathrm{BuNH}_{3}$	0.0163	0.3	3.38		
D(OEOEO) $)_{2} \mathrm{E}$	$2 f$	Li	0.0010	3.2	4.79)		
		Na	0.0360	100	6.82		
		K	0.330	1900	8.57 \}	7.1	3.8
		Cs	0.100	260	7.39		
		NH_{4}	0.280	740	8.01)		
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	$3{ }^{8}$	Li	0.0078	22.8	5.95		
		Na	0.273	1730	8.52		
		$\stackrel{\mathrm{K}}{\mathrm{R}}$	0.718	42800 4700	$\left.\begin{array}{c}10.4 \\ 9.10\end{array}\right\}$		4.5
		Rb	0.437	4700	$9.10{ }^{7} 87$	8.5	4.5
		Cs	0.181	576	7.87		
		NH_{4}	0.464	3260	8.89		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.451	170	7.14		
		$t-\mathrm{BuNH}_{3}$	0.245	48.9	6.40		
$(\mathrm{OHC})_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	5	Na	0.0952	328	7.53		
		K	0.460	5100	9.16		
		Rb	0.156	568	7.86		
		Cs	0.0565	124	6.95		
$\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	6^{8}	Li	0.0116	106	$6.23)$		
		Na	0.512	11600	8.62		
		K	0.722	52600	10.5	8.7	4.3
		Rb	0.463	6010	9.25	8.7	4.3
		Cs	0.228	853	8.11		
		NH_{4}	0.352	1610	8.47		
		$t-\mathrm{BuNH}_{3}$	0.488	70.3	6.61		
$\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	7\%h	Li	0.0142	42.1	6.31		
		Na	0.292	2000	8.60		
		Rb	0.211	863	8.11		
		Cs	0.102	246	7.36		
		NH_{4}	0.128	210	7.27		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.160	80.9	6.70		
		t - BuNH_{3}	0.217	8.25	5.35		
$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	9	Li	0.0051				
		${ }_{\mathrm{K}}^{\mathrm{Na}}$	0.182 0.517	811 6870	8.07 9.34		
		Rb	0.237	1070	8.23 \%	7.8	2.3
		Cs	0.080	181	7.18		
		NH_{4}	0.248	637	7.93)		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.097	39.6	6.28		
		$t-\mathrm{BuNH}_{3}$	0.088	2.12	4.54		
$\left(\mathrm{UrCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	11^{8}		0.0189	56.9	6.49 (
		Na	0.424	5340	9.19		
		K	0.746	60200	10.6	8.7	4.1
		Rb	0.444	5000	9.15	8.7	4.1
		Cs	0.193	638	7.93		
		NH_{4}	0.459	3150	8.87		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.218	136	7.01		
		$t-\mathrm{BuNH}_{3}$	0.268	12.4	5.59		
$\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO}) \mathrm{E}$	12^{8}	$1 . \mathrm{i}$	0.0423	$\begin{array}{r}136 \\ \hline 160000\end{array}$	7.01)		
		$\stackrel{\mathrm{Na}}{ }$	0.888	1160000	12.4		
		${ }_{\text {K }}^{\text {K }}$	0.902	839000	12.2 \%	10.0	5.4
		Rb	0.615	19500	9.95		
		Cs	0.368	2520	8.74		
		NH_{4}	0.606	10800	$9.60)$		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.451	953	8.16		
		t - BuNH_{3}	0.248	10.6	5.50		
$\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEOE})_{2} \mathrm{O}$	$13{ }^{3}$	Li	0.0800	320	7.52		
		Na	0.014	8300	9.45		
		K	0.370	580000	12.0		
		Rb	0.53	1100000	12.3	9.8	4.8
		Cs	0.340	23200	10.1		
		NH_{4}	0.27	170000	7.14		
$\left(\mathrm{PySCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	14^{\prime}	Li	0.0135	44	$6.34)$		
		Na	0.30	2300	8.69		
		K	0.70	47000	10.5		
		Rb	0.46	6300	9.28	8.7	4.3
		Cs	0.25	1100	8.25		
		NH_{4}	0.50	4500	9.08		

Table I (Continued)

Ligand system		$\begin{gathered} \mathrm{M}^{+} \text {of } \mathrm{M}^{+} \\ \text {picrate } \end{gathered}$	$R_{\mathrm{CDCl}_{3}{ }^{\text {b }}}$	$\begin{gathered} K_{\mathrm{a}} \times 10^{-3} \\ \mathrm{M}^{-1} \end{gathered}$	$-\Delta G^{\circ}$ $\mathrm{kcal} / \mathrm{mol}$	$\begin{aligned} & -\Delta G^{0}{ }_{\mathrm{av},}{ }^{\mathrm{c}} \\ & \mathrm{kcal} / \mathrm{mol} \end{aligned}$	$\underset{\mathrm{kcal} / \mathrm{mol}}{-\Delta\left(\Delta G^{\circ}\right)_{\max }^{d}}$
structure ${ }^{\text {a }}$	no.						
$\left(\mathrm{PyCH}_{2} \mathrm{OCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$	$15{ }^{g}$	Li	0.015	50	6.421		
		Na	0.33	2800	8.80		
		K	0.725	61000	10.6 ,	8.7	
		Rb	0.44	5600	$9.21\}$	8.7	4.2
		Cs	0.215	820	8.08		
		NH_{4}	0.50	4500	$9.08)$		
$\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}\left(\mathrm{OCH}_{3}\right)_{2}$	17^{f}	Li	0.0019	6.1	5.17		
		Na	0.0067	17	5.78		
		K	0.0031	5.4	5.10 ,	4.9	1.8
		Rb	0.0009	2	$4.51\}$	4.9	1.8
		Cs	0.0005	0.9	4.03		
		NH_{4}	0.0021	2.4	4.62		
$\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{~T}(\mathrm{OEOE})_{2} \mathrm{O}$	20^{f}	Li	0.010	33	$6.17)$		
		Na	0.023	620	7.91		
		K	0.0068	12	5.57 \%	5.7	3.2
		Rb	0.00205	4.5	4.99	5.7	3.2
		Cs	0.0015	2.75	4.70		
		NH_{4}	0.0032	3.5	4.84		
$\mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E}$	218	Li	0.00704	22.5	$5.94)$		
		Na	0.226	1220	8.30		
		K	0.740	85900	10.8 (
		Rb	0.524	11300	9.63	8.7	4.8
		Cs	0.262	1250	8.31		
		NH_{4}	0.575	9850	$9.53)$		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.315	334	7.53		
		t-BuNH3	0.534	105	6.85		
cis $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO}){ }_{2} \mathrm{E}$	22^{g}	Li	0.00846	27.2	6.05)		
		Na	0.128	480	7.75		
		K	0.671	34300	10.3 \}		
		Rb	0.381	3560	8.94	8.4	4.2
		Cs	0.164	529	7.81		
		NH_{4}	0.536	6650	$9.31)$		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.281	247	7.36		
		t-BuNH3	0.313	18.3	5.82		
trans $-(\mathrm{BzOCH})_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$	238	Li	0.0132	43.1	$6.33)$		
		Na	0.240	1430	8.40		
		K	0.769	227000	11.4		
		Rb	0.561	18700	9.93 \}	9.1	5.1
		Cs	0.292	1650	8.49		
		NH_{4}	0.637	24100	$10.1)$		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.419	832	8.08		
		t-BuNH3	0.579	191	7.21		
$c i s-\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$	24	Li	0.0121	39.5	6.28		
		Na	0.136	564	7.85		
		K	0.428	5980	9.25 \}	8.0	3.0
		Rb	0.293	2250	8.67	8.0	3.0
		Cs	0.0755	186	7.20		
		NH_{4}	0.320	1540	8.45)		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.104	50	6.42		
		t-BuNH3	0.107	2.99	4.75		
trans-(o- $\left.\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$	25°	Li	0.0176	58.0	6.50		
		Na	0.182	813	8.07		
		K	0.807	158000	11.2 (
		Rb	0.608	20400	9.98 \}	9.1	4.7
		Cs	0.316	1810	8.54		
		NH_{4}	0.683	24000	$10.1)$		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.400	599	7.89		
		$t-\mathrm{BuNH}_{3}$	0.449	48.2	6.39		
$\mathrm{E}\left(\mathrm{OEOEOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$	$26^{g . i}$	Li	0.0246	82.9	6.721		
		Na	0.211	1050	8.22		
		K	0.698	41900	10.4		
		Rb	0.461	6320	9.29	8.7	3.7
		Cs	0.236	987	8.19		
		NH_{4}	0.570	8450	9.46		
		$\mathrm{CH}_{3} \mathrm{NH}_{3}$	0.341	392	7.64		
		t-BuNH3	0.380	29.5	6.10		

${ }^{a} \mathrm{D}=1$, 1^{\prime}-binaphthyl substituted in the $2,2^{\prime}$ positions with O 's and in the $3,3^{\prime}$ positions by side chains; $\mathrm{E}=\mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{Ur}=\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CONCH}_{3}$; $\mathrm{Py}=\alpha$-pyridyl: $\mathrm{T}=1,1^{\prime}$-bitetralyl substituted in the 2.2^{\prime} positions with O 's and in the 3.3^{\prime} positions by side chains: $\mathrm{Nap}=2.3$-naphthalene, $\mathrm{Bz}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} .{ }^{b}$ Ratio of picrate to host in CDCl_{3} phase at equilibrium obtained by direct measurement, or calculated by difference from measurements made on aqueous phase. ${ }^{c}$ Average $-\Delta G^{\circ}$ values of each host binding $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$, and $\mathrm{NH}_{4}{ }^{+}$picrates. ${ }^{d} \Delta\left(\Delta G^{\circ}\right)_{\max }$ for each host equals the highest $-\Delta G^{\circ}$ value minus the lowest $-\Delta G^{\circ}$ value among the $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$, or $\mathrm{NH}_{4}{ }^{+}$picrate possible partners. ${ }^{e}$ We thank Dr. L. Kaplan for these measurements. f Based on A values obtained by UV measurements on CDCl_{3} layer. ${ }^{g}$ Except for Li^{+}picrate ${ }^{-}$, based on A values calculated from UV measurements on $\mathrm{H}_{2} \mathrm{O}$ layer. ${ }^{h} \mathrm{~K}^{+}$picrate was not determined because the K^{+}salt of the host precipitated. No correction was made for the small amount of host distributed in the aqueous phase at equilibrium. 'Corrected for 1.1% solubility of host $\mathbf{2 6}$ in $0.015 \mathrm{M} \mathrm{K}^{+}$picrate ${ }^{-}$in $\mathrm{H}_{2} \mathrm{O}$.

For this ion, the smaller oligomer had a $-\Delta G^{\circ}$ which was 4.9 $\mathrm{kcal} / \mathrm{mol}$ higher than that of the larger oligomer. Apparently $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathbf{1 2})$ has a near ideal arrangement for binding Na^{+}, since its $-\Delta G^{\circ}$ value exceeds that of all other systems reported here by at least $4 \mathrm{kcal} / \mathrm{mol}$. This suggests that the $\mathrm{P} \rightarrow \mathrm{O}$ binding sites are substantially involved with Na^{+}, and correlates with the fact that $\left[(\mathrm{EtO})_{2} \mathrm{POCH}_{2}\right]_{2^{-}}$ $\mathrm{D}\left(\mathrm{OCH}_{3}\right)_{2}(17)$ binds Na^{+}better than any other ion with a $-\Delta G^{\circ}$ of $5.8 \mathrm{kcal} / \mathrm{mol}$. Unexpectedly, $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2}-$ $\mathrm{D}(\mathrm{OEOEOE})_{2} \mathrm{O}(13)$ binds Li^{+}about 0.5 kcal better than its smaller oligomer, $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12). Because of the small ionic diameter of $\mathrm{Li}^{+}(\sim 1.4 \bar{\AA})$, it can accommodate fewer contact oxygen binding sites. Possibly the more flexible, larger oligomer generates more appropriate arrangements than the more rigidly organized lower oligomer.

Host $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{~T}(\mathrm{OEOE})_{2} \mathrm{O}(20)$ is a molecular substitute for its less accessible $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOE})_{2} \mathrm{O}$ analogue. In molecular models and in complexation of $\mathrm{RNH}_{3} \mathrm{PF}_{6}$ salts, substitution of a $1,1^{\prime}$-bitetralyl for a $1,1^{\prime}$ binaphthyl unit in a host produced similar results. ${ }^{17}$ The $-\Delta G^{\circ}$ values of $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{~T}(\mathrm{OEOE})_{2} \mathrm{O}(\mathbf{2 0})$ provided a $-\Delta G^{\circ}{ }_{\text {av }}$ value of $5.7 \mathrm{kcal} / \mathrm{mol}$. only $0.8 \mathrm{kcal} / \mathrm{mol}$ more than that of the noncyclic model, $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}\left(\mathrm{OCH}_{3}\right)(\mathbf{1 7})$. Although $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{~T}(\mathrm{OEOE})_{2} \mathrm{O}(\mathbf{2 0})$ shows a small bias for binding the smaller ions, the magnitude of the bias is surprisingly small. Its molecular model suggests that it should be an ideal complexer of Na^{+}, which it is far from being. The system's distinguishing feature is that it is the only cycle studied thus far in CDCl_{3} that binds Li^{+}better than K^{+}, although the difference is only $0.6 \mathrm{kcal} / \mathrm{mol}$.

It is interesting to compare the best host of this study with the best hosts of other studies, namely, dicyclohexyl-18-crown- 6 and the noncrown host, 29. ${ }^{\text {dd }}$ The respective $-\Delta G^{\circ}{ }_{a}$

29
and $-\Delta\left(\Delta G^{\circ}\right)_{\text {max }}$ values ($\mathrm{kcal} / \mathrm{mol}$) for the three systems are as follows: 29, 10.2 and $5.3 ;\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$, 10.0 and 5.4; dicyclohexyl-18-crown-6, 9.3 and 4.1. Thus 29 and $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathbf{1 2})$, both of which have been designed with the help of molecular models, are the best and most differentiating hosts that have been examined in our test system.

Effects on Free Energies of Association of Changes in Structures of Ligand Systems Containing the 18-Crown-6 Macrocycle. The five substituted 18 -crown- 6 systems examined exhibited the following decreasing orders of $-\Delta G^{\circ}{ }_{\mathrm{iv}}$ and $-\Delta\left(\Delta G^{\circ}\right)_{\text {nux }}(\mathrm{kcal} / \mathrm{mol})$, respectively: trans $-\left(\mathrm{BzOCH}_{2}\right)_{2-}$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(9.1)(5.1) ;$ trans $-\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (9.1) (4.7); $\mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E}$ (8.7) (4.8); cis- $\left(\mathrm{BzOCH}_{2}\right)_{2-}$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (8.4) (4.2); cis $-\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (8.0) (3.0). Both the order itself and the small magnitudes of differences suggest that the substituent effects are largely conformational in character. Molecular model examinations of the systems suggest that trans substitution does not disturb the preferred gauche O to O relationship of the substituted $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ unit. ${ }^{18}$ Of course, naphtho substitution eclipses the oxygens of this unit, whereas cis substitution pushes the unit toward an anti relationship for the two oxygens. Since con-
vergence of unshared electron pairs on the center of the hole should enhance binding, the conformational effect on binding is likely to be gauche > eclipsed $>$ anti. This conformational order translates into the configurational order, trans-vicinal $>$ naphtho $>$ cis-vicinal, which corresponds to the order observed.

Commercial dicyclohexyl-18-crown-6 is composed largely of the cis,cis,syn and cis.cis, anti isomers. It provides calibration as to the effects of enforced gauche relationships of two O-$\mathrm{C}-\mathrm{C}-\mathrm{O}$ units on binding ability toward the six picrate salts. This macrocycle gave a $-\Delta G^{\circ}{ }_{\mathrm{av}}$ value of $9.3 \mathrm{kcal} / \mathrm{mol}$, close to the $9.1 \mathrm{kcal} / \mathrm{mol}$ observed for both trans $-\left(\mathrm{BzOCH}_{2}\right)_{2}$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (23) and trans- $\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (25). All three systems best bind K^{+}, with $-\Delta G^{\circ}$ values $(\mathrm{kcal} / \mathrm{mol})$ as follows: trans $-\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}, 11.4$; dicyclohexyl-18-crown-6, 11.3; trans- $\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2}-$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}, 11.2$. The near identity of these free-energy values provides a standard for comparing all-gauche 18 -crown-6 systems with other hosts. Unfortunately, the solubility in water of 18 -crown- 6 and of its metal ion complexes precludes determination of its association constants in our test system.

No special binding effects arising out of its "jaws"-like structure are visible in the respective $-\Delta G^{\circ}$ av and $-\Delta\left(\Delta G^{\circ}\right)_{\text {max }}$ values of 8.7 and $3.7 \mathrm{kcal} / \mathrm{mol}$ observed for $\mathrm{E}\left(\mathrm{OEOEOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(26)$. These values are close to those observed for cis $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (22). which are 8.4 and $4.2 \mathrm{kcal} / \mathrm{mol}$, respectively. These two systems best bind K^{+}with $-\Delta G^{\circ}$ values of 10.4 and $10.3 \mathrm{kcal} /$ mol, respectively. Thus the bicyclic system behaves like a cisdisubstituted 18 -crown- 6 in which only the better organized of the two ring systems is involved in binding. Although molecular models suggest that with the large Cs^{+}ion the larger ring of $\mathrm{E}\left(\mathrm{OEOEOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(26)$ is beautifully structured to provide four additional binding sites, such an effect if it exists is disappointingly small. Thus for Cs^{+} $\mathrm{E}\left(\mathrm{OEOEOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathbf{2 6})$ gives $-\Delta G^{\circ}$ of 8.2 , whereas for cis-($\left.\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (22) the value is $7.8 \mathrm{kcal} / \mathrm{mol}$. Probably both rings of the bicyclic system are engaged in binding Cs^{+}, but too many conformations must be frozen out during complexation to provide much net free energy of association. This result illustrates how misleading molecular model examination can be in designing complementary host-guest relationships. Enforced conformational organization of contact sites appears to be a necessary condition for large additive effects on $-\Delta G^{\circ}$ of association.

Correlations between Structures of Hosts and Their Abilities to Complex Ammonium and Alkylammonium Ions. The $-\Delta G^{\circ}$ values for association were determined for nine of the new ligand systems complexing $\mathrm{NH}_{4}{ }^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$. and t - $\mathrm{BuNH}_{3}{ }^{+}$ picrates (Table 1). Table 11 reports the values for each host of

In complexing $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, the hosts rank in the following decreasing order of their $-\left(\Delta G^{\circ}\right)$ values ($\mathrm{kcal} / \mathrm{mol}$): dicy-clohexyl-18-crown-6 (9.4); [(EtO) $\left.)_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (8.2); trans- $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (8.1); trans-(o$\left.\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E} \quad(7.9) ; \quad \mathrm{E}\left(\mathrm{OEOEOCH}_{2}\right)_{2}-$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (7.6); Nap(OEOEO) E_{2} (7.5); cis$\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(7.4) ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(7.1)$; $\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(6.7)$; cis- $\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (6.4): $\quad\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E} \quad$ (6.3); $\quad\left(\mathrm{CH}_{3}\right)_{2-}$ $\mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(4.8)$. This order again emphasizes the importance to binding of an all-gauche, regular arrangement of oxygens in the macrocycles. Among the top four binders, three are 18 -crown- 6 systems in which that arrangement is the most probable. At the bottom of the scale is found the noncyclic compound, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(1)$.
Interestingly, $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12) is second in rank. Thus its macroring oxygens appear similarly well organized for complexation of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$. Since its

Table II. Differences in Free Energies of Association of Hosts with $\mathrm{NH}_{4}{ }^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and t - $\mathrm{BuNH}_{3}+\mathrm{Picrates}^{-}$in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$

ligand system	$\begin{gathered} -\left(\Delta G^{\circ}\right) \mathrm{CH}_{3} \mathrm{NH}_{3}+ \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} -\Delta\left(\Delta G^{\circ}\right)_{\mathrm{CH}^{\mathrm{NH}} 3^{2} \mathrm{NH}_{3}+,} \\ \text { kcal } / \mathrm{mol} \\ \hline \end{gathered}$	$\begin{gathered} -\Delta\left(\Delta G^{\circ}\right)_{1-R 3}^{\mathrm{CH}_{3} \mathrm{NaN}_{3}^{+} \mathrm{NH}_{3}^{+}} \\ \text {kcal } / \mathrm{mol} \end{gathered}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(1)$	4.8	0.6	1.4
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(3)$	7.1	1.8	0.7
$\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (7)	6.7	0.6	1.3
$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(9)$	6.3	1.6	1.8
$\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12)	8.2	1.4	2.7
$\mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E}(21)$	7.5	2.0	0.6
cis-($\left.\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (22)	7.4	1.9	1.6
trans-($\left.\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (23)	8.1	2.0	0.9
cis-(o-ClC66 $\left.\mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (24)	6.4	2.1	1.6
trans $-\left(\mathrm{O}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (25)	7.9	2.2	1.5
$\left.\mathrm{E}(\mathrm{OEOEOCH})_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (26)	7.6	1.9	1.5
dicyclohexyl-18-crown-6	9.4	1.2	2.5

$-\Delta G^{\circ} \mathrm{CH}_{3} \mathrm{NH}_{3}+$ value exceeds that of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (3) by $1.1 \mathrm{kcal} / \mathrm{mol}$, one of the $\mathrm{P} \rightarrow \mathrm{O}$ oxygens of the side chain also must be involved in binding. A molecular model of the complex between $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$and $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2}-$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12) provides a structure in which the $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$is bound to the six ring oxygens by three $\mathrm{NH}^{+} \ldots \mathrm{O}$ hydrogen bonds in a tripod arrangement and by three $\mathrm{N}^{+} \ldots \mathrm{O}$ contact sites. This places the axis of the $\mathrm{CH}_{3}-\mathrm{N}$ bond perpendicular to the best plane of six ring oxygens and roughly parallel to the plane of the tangential naphthalene ring. To provide room for the CH_{3} group of the guest, the $\mathrm{CH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}$ group on the methyl side of the macroring must occupy a conformation that turns the two hydrogens of the CH_{2} group toward the methyl group and turns the bulky $\mathrm{PO}(\mathrm{OEt})_{2}$ away from the methyl. On the side of the macroring opposite the methyl, the $\mathrm{P} \rightarrow \mathrm{O}$ oxygen beautifully contacts the N^{+}by protruding slightly into the hole of the macroring. The model of this complex is very compact. Thus many degrees of conformational freedom must be frozen out during formation of the complexes. Apparently the $\mathrm{P} \rightarrow \mathrm{O} \cdots \mathrm{N}^{+}$interaction is enough to pay this cost and add 1.1 kcal to the binding as well.

The ranking of hosts in decreasing order of $-\Delta\left(\Delta G^{\circ}\right)_{\mathrm{CH}_{3} \wedge \mathrm{NH}_{3}+}^{\mathrm{NH}_{4}^{+}}$values ($\mathrm{kcal} / \mathrm{mol}$) is as follows: trans $-(o-$ $\left.\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E} \quad$ (2.2); cis- $\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2}-$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (2.1); $\mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E}$ (2.0); trans $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E} \quad(2.0)$; cis- $\left(\mathrm{BzOCH}_{2}\right)_{2}-$ $\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(1.9)$; $\left.\mathrm{E}(\mathrm{OEOEOCH})_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(1.9)$; $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathrm{l} .8) ;\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathrm{l} .6)$; $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(1.4)$; dicyclohexyl-18-crown-6 (1.2); $\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(0.6) ;\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(0.6)$. If three of the hydrogens of $\mathrm{NH}_{4}{ }^{+}$in the complexes hydrogen bond oxygens, the fourth is available to hydrogen bond the picrate counterion in a contact ion pair. When $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$is complexed by three hydrogen bonds to oxygen, the ion pair must be more separated. This difference accounts for the fact that $\mathrm{NH}_{4}{ }^{+}$is always better bound than $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$.

The above ranking of hosts in $-\Delta\left(\Delta G^{\circ}\right)_{\mathrm{CH}_{3} \mathrm{NH}_{3}+}^{\mathrm{N}_{4}^{+}}$values undoubtedly reflects many factors, only two of which will be discussed. Since CDCl_{3} is a weakly polar medium, the degree of charge separation in the complex is bound to affect this parameter rather seriously. With the exception of dicyclo-hexyl-18-crown-6, the position of the host in the rank correlates roughly with the polarity of the groups close to the positive charge. Thus chlorophenyl, naphthyl, and benzyl groups are less polar than CDCl_{3} as media for charge separation, and hosts containing these groups are high in the order. Groups such as $\mathrm{COCH}_{3}, \mathrm{CO}_{2} \mathrm{H}$, and $\mathrm{PO}(\mathrm{OEt})_{2}$ are more polar than CDCl_{3}, and hosts containing these groups are found relatively low in the order. The second factor involves positive charge delocalization in the complex. The strongly complexing hosts
such as dicyclohexyl-18-crown-6 and $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2}$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12) undoubtedly disperse the positive charge better than the more weakly binding hosts. The more dispersed the charge, the smaller should be the cost in free energy of charge separation.

In molecular models of these complexes of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$. no serious steric repulsions are visible between the CH_{3} group of the guest and the substituents of the host. The much greater spacial requirement of $t-\mathrm{Bu}$ as compared to the CH_{3} are reflected in the values of $-\Delta\left(\Delta G^{\circ}\right)_{\text {P-BUNH }}{ }^{\mathrm{CH}^{+}}{ }^{+}$. Ranking of the hosts in terms of decreasing values of this parameter ($\mathrm{kcal} / \mathrm{mol}$) provides the following order: $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (2.7): dicyclohexyl-18-crown-6 (2.5); $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2}-$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(1.8)$; cis- $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(1.6)$; cis- $\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (1.6); trans- $\left(o-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2}-$ $\left.\mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(1.5): \mathrm{E}(\mathrm{OEOEOCH})_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(1.5)$; $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2} \quad(1.4):\left(\mathrm{HO}_{2} \mathrm{C}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (1.3): trans- $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E} \quad$ (0.9); $\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(0.7)$; $\mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E}(0.6)$. Fortunately, X -ray structures of the complexes between $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{3} \mathrm{ClO}_{4}$ and hosts $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E},{ }^{19} \mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E} .{ }^{20}$ and 18 -crown- 6^{20} have been completed and correspond pretty much to what was expected from examination of CPK molecular models.

The relatively large $-\Delta\left(\Delta G^{\circ}\right)_{1-\mathrm{Bu} \mathrm{NH}_{3}+}^{\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}}$value of $2.7 \mathrm{kcal} / \mathrm{mol}$ for $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (12) compared to the much smaller value of 0.7 for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(3)$ correlates with the differences in steric compression observed in models of the four complexes involved. In models of the complexes of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$with $\left(\mathrm{CH}_{3}\right)_{2}{ }^{-}$ $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (3), little compression is visible. Both in models of the latter complex and in its X-ray structure, two guest CH_{3} groups abut the face of a 2-methylnaphthyl group of the host. The system accommodates potential compression by the best plane of the macroring tilting away from being normal to the plane of the 2 -methylnaphthyl group. This tilt is resisted somewhat by the $\mathrm{CH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}$ group on the face of the macroring opposite the $t-\mathrm{Bu}$ in the complex of $t-\mathrm{BuNH}_{3}{ }^{+}$with $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$.

The relatively large $-\Delta\left(\Delta G^{\circ}\right)_{t-B u N H_{3}^{+}}^{\mathrm{CH}_{3}}{ }^{+}$value of $2.5 \mathrm{kcal} / \mathrm{mol}$ for dicyclohexyl-18-crown-6 compared to the much smaller value of $0.9 \mathrm{kcal} / \mathrm{mol}$ for trans- $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (23) also correlates with expectations based on molecular model examination. In models of the complexes of $\mathrm{CH}_{3} \mathrm{NH}_{3}+$ and of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{3}+$ with trans- $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}$ (23), little compression is visible. However, the cis-fused cyclohexane rings in models of either cis,cis,syn- or cis,cis.-anti-dicyclohexyl-18-crown-6 are compressed by the CH_{3} groups of the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$guest in two out of the three isomeric complexes. In models of the complex of cis, cis.syn-dicyclohexyl-18-crown-6 in which the t-Bu group is anti to the two cyclohexane rings, no such compression is visible. How-
ever, the two cyclohexane rings fused syn to one another in such a complex provide considerable steric inhibition of contact ion pairing by the picrate ion.

The low steric requirements for complexation of t - $\mathrm{BuNH}_{3}{ }^{+}$ with $\mathrm{Nap}(\mathrm{OEOEO})_{2} \mathrm{E}(\mathbf{2 1})$ is obvious in molecular models, and $-\Delta\left(\Delta G^{\circ}\right)_{l-\mathrm{BuNH}}^{3}+\mathrm{CH} \mathrm{N}^{+}$is only $0.6 \mathrm{kcal} / \mathrm{mol}$. The other systems provide values for this parameter interpretable in terms of the same types of structural features discussed above. The only exception involves the noncyclic host, $\left(\mathrm{CH}_{3}\right)_{2}{ }^{-}$ $\mathrm{D}\left(\mathrm{OEOEOCH}_{3}\right)_{2}(\mathbf{1})$, whose value of $1.4 \mathrm{kcal} / \mathrm{mol}$ is surprisingly high, particularly in view of the fact that $-\Delta G^{\circ} \mathrm{CH}_{3} \mathrm{NH}_{3}+$ for this host is only $4.8 \mathrm{kcal} / \mathrm{mol}$. Possibly the $\mathrm{RNH}_{3}{ }^{+}$complexes of this relatively unorganized host are held together by only two NH...O hydrogen bonds and several $\mathrm{N}^{+} \ldots \mathrm{O}$ contact binding sites. Such structures leave the third NH^{+}free to hydrogen bond and form a contact ion pair with the picrate ion. This latter effect may be much more sterically inhibited by the t-Bu than by a methyl group.
The magnitudes of the $-\Delta\left(\Delta G^{\circ}\right)_{1-\mathrm{BuNH}}^{3}+\mathrm{C} \mathrm{H}_{3} \mathrm{~N}_{3}^{+}$values provide a measure of the structural recognition based on steric effects between potential complexing partners. The maximum value observed thus far for any of the hosts is $2.7 \mathrm{kcal} / \mathrm{mol}$, and is observed for $\left.\left[(\mathrm{EtO})_{2} \mathrm{POCH}_{2}\right)\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$. The steric character of this parameter suggests that the maximum amount of chiral recognition ${ }^{17}$ based on steric effects that might be realized in these types of systems is of the same magnitude. The parameter $-\Delta\left(\Delta G^{\circ}\right)_{i-B U \mathrm{NH}_{3}+}^{\mathrm{NH}_{4}^{+}}$reflects both steric and electronic effects.

The largest value observed thus far for any host is 4.1 kcal , and is found for $\left[(\mathrm{EtO})_{2} \mathrm{OPCH}_{2}\right]_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}(12)$. This value is about 42% of that for $-\Delta G^{\circ} \mathrm{NH}_{4}+$ binding this host. In other words, substitution of a t - Bu for a hydrogen of $\mathrm{NH}_{4}{ }^{+}$ reduces its free energy binding potential by about 42%.

Experimental Section

General. All solvents were reagent grade. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl immediately prior to use. Dimethylformamide (DMF) was distilled at 30 mm from $3 \AA$ molecular sieves, and was stored over the same agent. Diethyl ether was distilled from lithium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$ immediately prior to use, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was fractionally distilled. Melting points were measured on a Thomas-Hoover apparatus, and are uncorrected. Mass spectra were taken on an AEI MS-9 machine at 70 eV . Infrared spectra were taken on a Perkin-Elmer Model 297 spectrometer, and ${ }^{1} \mathrm{H}$ NMR spectra were taken on either a Varian HA-100 or a Varian T-60 spectrometer, with chemical shifts given in $\delta(\mathrm{ppm})$ from internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. Ultraviolet measurements were made at $24-26^{\circ} \mathrm{C}$ with a Beckman DU spectrometer equipped with a Gilford Model 252 modernization system. Gel permeation chromatographic columns were used as follows: column A, $3 / 8 \mathrm{in}$. (o.d.) by 20 ft of Styragel $100 \AA$ beads (Waters Associates Inc.), 37-75 $\mu \mathrm{m}$ particle size, exclusion limit 1500 mol wt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at a flow rate of about $4 \mathrm{~min}^{-1}$ and a pressure of 400-600 psi; column B, same as A except THF was solvent. Optical rotations were taken with a Perkin-Elmer 141 polarimeter in a $1-\mathrm{dm}$ thermostated cell.

2,2'-Bis(1,4,7-trioxaoctyl)-3,3'-dimethyl-1,1'-binaphthyl (1). A mixture of $2.0 \mathrm{~g}(6.4 \mathrm{mmol})$ of $2,2^{\prime}$-dihydroxy-3, 3^{\prime}-dimethyl-1.1binaphthyl. ${ }^{6} 3.6 \mathrm{~g}(13.1 \mathrm{mmol})$ of 3.6 -dioxaheptyl tosylate, ${ }^{5} 0.73 \mathrm{~g}$ (13 mmol) of KOH pellets $(85 \%$), and 200 mL of THF was stirred under N_{2} at reflux for 48 h . The mixture was cooled and shaken with 400 mL each of water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a residue that was chromatographed on 100 g of alumina- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The column was washed with 2 L of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was eluted with 4 L of 5% $\mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(v)$ to give $2.1 \mathrm{~g}(64 \%)$ of 1 as an oil, film dried at 0.1 mm for 24 h at $50^{\circ} \mathrm{C} ; \mathrm{M}^{+} \mathrm{m} / e 518 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.52\left(\mathrm{~s} . \mathrm{ArCH}_{3} .6 \mathrm{H}\right), 3.22\left(\mathrm{~s}, \mathrm{OCH}_{3} .6 \mathrm{H}\right) .3 .38\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{O}, 16 \mathrm{H}\right)$. $7.22(\mathrm{~m}, \mathrm{ArH}, 6 \mathrm{H}), 7.76\left(\mathrm{~m}, \mathrm{ArH}^{5}, 2 \mathrm{H}\right), 7.78\left(\mathrm{~s}, \mathrm{ArH}^{4}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{6}\right) \mathrm{C} . \mathrm{H}$.

2,3:4,5-Bis[1,2 -(3-methyinaphtho)]-1,6,9,12,15,18-hexaoxacyclo-eicosa-2,4-diene (3). Procedure A. To a solution stirred under N_{2} of $4.0 \mathrm{~g}(12.7 \mathrm{mmol})$ of 3.3^{\prime}-dimethyl-2, 2^{\prime}-dihydroxy- $1,1^{\prime}$-binaphthyl ${ }^{6}$
and $7.0 \mathrm{~g}(12.8 \mathrm{mmol})$ of pentaethylene glycol ditosylate ${ }^{2 \mathrm{~b}}$ dissolved in 600 mL of THF was added $1.5 \mathrm{~g}(26.8 \mathrm{mmol})$ of $\mathrm{KOH}(85 \%)$ in 6 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was refluxed for 48 h , cooled, and shaken with 500 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The layers were separated. and the organic layer was washed with water, dried, and evaporated under reduced pressure. The residue was chromatographed on 150 g of alumina- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The column was washed with 2 L of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. and the product was eluted with 3 L of $5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v), evaporation of which gave $2.9 \mathrm{~g}(44 \%)$ of 3 after recrystallization from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{mp} 130-131{ }^{\circ} \mathrm{C} ; \mathrm{M}^{+} \mathrm{m} / \mathrm{e} 516 ;{ }^{1} \mathrm{H} \mathrm{NMR}(60 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta 2.53\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right), 3.48\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 7.08(\mathrm{~m}$, $\mathrm{ArH}, 6 \mathrm{H}), 7.66\left(\mathrm{~m}, \mathrm{ArH}^{5}, 2 \mathrm{H}\right) 7.70\left(\mathrm{~s}, \mathrm{ArH}^{4}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis $[1,2$-(3-aldehydonaphtho)]-1,6,9,12,15,18-hexaoxacy-cloeicosa-2,4-diene (5). A solution of $1.3 \mathrm{~g}(1.88 \mathrm{mmol})$ of $2.3: 4.5$ -bis[1,2-(3-hydroxymethylnaphtho)]-1,6,9,12,15,18-hexaoxacy-cloeicosa-2.4-diene (4) ${ }^{36}$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with 2.02 $\mathrm{g}(23.2 \mathrm{mmol})$ of activated $\mathrm{MnO}_{2}{ }^{7}$ for 77 h at $25^{\circ} \mathrm{C}$ under N_{2}. The mixture was filtered through a Celite pad which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrates were evaporated to give 1.02 g of $5, \mathrm{mp} \mathrm{1} 164-166$ ${ }^{\circ} \mathrm{C}$, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to give $0.89 \mathrm{~g}(88 \%)$ of 5: mp $165-167^{\circ} \mathrm{C} ; \mathrm{M}^{+} \mathrm{m} / \mathrm{e} 544$ $^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta$ $3.1-3.8\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{O}, 16 \mathrm{H}\right), 3.92\left(\right.$ broad $\left.\mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{ArOCH}_{2}, 4 \mathrm{H}\right)$, $7.0-7.7(\mathrm{~m}, \mathrm{ArH}, 6 \mathrm{H}), 7.9-8.25(\mathrm{~m}, \mathrm{ArH}, 2 \mathrm{H}), 10.67(\mathrm{~s}, \mathrm{CHO}, 2$ $\mathrm{H})$; 1 R spectrum $\left(\mathrm{CDCl}_{3}\right) 1682 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{8}\right) \mathrm{C}$. H.

2,3:4,5-Bis[1,2 -(3-carbomethoxynaphtho)]-1,6,9,12,15,18-hex-aoxacycloeicosa-2,4-diene (6). A mixture of $2.694 \mathrm{~g}(4,952 \mathrm{mmol})$ of dialdehyde $5,10.0 \mathrm{~g}(0.115 \mathrm{~mol})$ of activated $, \mathrm{MnO}_{2},{ }^{7} 1.60 \mathrm{~g}(32.6$ $\mathrm{mmol})$ of NaCN , and anhydrous $\mathrm{CH}_{3} \mathrm{OH}(200 \mathrm{~mL})$ was stirred under an N_{2} atmosphere at $0^{\circ} \mathrm{C}$ as a solution of glacial acetic acid $(0.9 \mathrm{~mL})$ in 50 mL of anhydrous $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise over a $10-\mathrm{min}$ period. ${ }^{8}$ The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 14 h and filtered through a Celite pad, and the solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrates were evaporated, the residue was distributed between $\mathrm{CH}_{2} \mathrm{Cl}$, (50 mL) and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$, and the aqucous phase was exiracted with two $50-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and solvent was removed to yield a white foam (3.0 g), which was passed through a chromatographic column of 125 g of MCB 80-325 mesh chromatographic grade basic alumina in $98 / 2$ (v / v) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$. The first 200 mL of eluate was evaporated and the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to yield 2.4 g of crystalline material, recrystallization of which gave $2.20 \mathrm{~g}(75 \%)$ of $\mathbf{6}: \mathrm{mp} 119-120$ ${ }^{\circ} \mathrm{C}: \mathrm{M}^{+} m / e$ 604; IR $\left.\left(\mathrm{CHCl}_{3}\right) 1717 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})\right)^{\prime} \mathrm{H}$ VMR $\left(\mathrm{CDCl}_{3}\right.$, $60 \mathrm{MHz}) \delta 2.94 .2\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 4.01\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}, 6 \mathrm{H}\right)$, 7.00-7.70 (m, ArH, 6 H), 7.87-8.13 (nı. ArH, 2H), 8.52 (s, ArH ${ }^{4.4}$, $2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{10}\right) \mathrm{C}, \mathrm{H}$. This compound is sensitive to hydrolysis on silica gel or basic alumina chromatography. Neutral activity 3 (Brockman) is recommended.

2,3:4,5-Bis[1,2-(3-carboxynaphtho)]-1,6,9.12,15,18-hexaoxacyclo-eicosa-2,4-diene (7). Diester $6(360 \mathrm{mg}, 0.600 \mathrm{mmol}$) was added to a solution of $310 \mathrm{mg}(7.75 \mathrm{mmol})$ of NaOH in 1 mL of $\mathrm{H}_{2} \mathrm{O}-13 \mathrm{ml}$ of $95 \% \mathrm{EtOH}$, and the solution was stirred under N_{2} at $25^{\circ} \mathrm{C}$ for 6 h . The solvent was evaporated under reduced pressure, and the residue shaken with 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 40 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqucous phase was separated and acidified to $\mathrm{pH} \mid$ by dropwise addition of 6 N HCl . The cloudy mixture was extracted with threc 30 -ml. portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and solvent was evaporated to give a white foam (348 mg). This material was subjected to gel permeation chromatography on colunin A to give product with retention volume of 173 ml . of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which after solvent evaporation gave 322 mg (94%) of diacid 7 , which crystallized when triturated with $\mathrm{Et}_{2} \mathrm{O}: \operatorname{mp} 201-205^{\circ} \mathrm{C} ; \mathrm{M}^{+} \mathrm{m} / \mathrm{e} 576 ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) 1715$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 3.0-4.2(\mathrm{~m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}$), $7.00-7.70(\mathrm{~m}, \mathrm{ArH}, 6 \mathrm{H}), 7.90-8.20$ (m, ArH. $2 \mathrm{H}) .8 .9$ (broads, $\left.\mathrm{ArH}^{4}, 2 \mathrm{H}\right) .8 .9-9.57$ (broads, $\left.\mathrm{CO}_{2} \mathrm{H}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{10}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis $[1,2$-(3-cyanonaphtho) $]-1,6,9,12,15,18$-hexaoxacyclo-eicosa-2,4-diene (8). A mixture of $1.8 \mathrm{~g}(3.3 \mathrm{mmol})$ of dialdehyde 5 , $2.6 \mathrm{~g}(38.2 \mathrm{mmol})$ of $\mathrm{NaO}_{2} \mathrm{CH}$, and $1.4 \mathrm{~g}(20.3 \mathrm{mmol})$ of $\mathrm{HONH}_{3} \mathrm{Cl}$ in 30 mL of formic acid ${ }^{9}$ was stirred under N_{2} and heated to $110^{\circ} \mathrm{C}$ for 2 h . The solution was cooled and shaken with 400 mL each of CHCl_{3} and water. The organic layer was washed with water $(500 \mathrm{~mL})$ and a $10 \% \mathrm{NaHCO}$ solution in water (500 ml) and dried (MgSO_{4}), and the solvent was evaporated under reduced pressurc. The residue was chromatographed on 60 g of alumina $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the product
was eluted with 2 L of $10 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(v)$ to give $1.5 \mathrm{~g}(84 \%)$ of 8 after recrystallization from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$: mp $148-149^{\circ} \mathrm{C}: \mathrm{M}^{+}$ $m / e 538 ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right)$, 7.36 (m, ArH, 6 H), 7.97 (m, ArH ${ }^{5}, 2 \mathrm{H}$). 8.45 ($\mathrm{s}, \mathrm{ArH}^{4}, 2 \mathrm{H}$), Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis [1,2-(3-acetylnaphtho)]-1,6,9,12,15,18-hexaoxacyclo-eicosa-2,4-diene (9). To a solution of $0.40 \mathrm{~g}(0.74 \mathrm{mmol})$ of dinitrile 8 in 100 mL of THF stirred under N_{2} at $-78^{\circ} \mathrm{C}$ was added 10 mL of $\mathrm{CH}_{3} \mathrm{Li}$ in $\mathrm{Et}_{2} \mathrm{O}(1.6 \mathrm{M})$. The mixture was stirred for 30 min , and 10 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was cautiously added dropwisc followed by 50 mL of 6 N hydrochloric acid. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h and shaken with 200 mL of CHCl_{3} and 400 mL of $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with 500 mL of $\mathrm{H}_{2} \mathrm{O}$ and 300 mL of $10 \% \mathrm{NaHCO}_{3}$ aqueous solution and dried (MgSO_{4}). The solvent was evaporated under reduced pressure, and the residue was chromatographed on 40 g of silica gel $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The column was washed with 500 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 11 . of 10% THF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was eluted with 1-L portions (v) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}(4: 1,1: 1$, and $1: 3)$ to give after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ THF 150 mg (35%) of diketone $9: \mathrm{mp}$ $154-155^{\circ} \mathrm{C}: \mathrm{M}^{+} m / e 572 ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.79(\mathrm{~s}$, $\left.\mathrm{CH}_{3} .6 \mathrm{H}\right) .3 .59\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right) .7 .34(\mathrm{~m}$. ArH. 6 H). 8.00 (m, $\mathrm{ArH}^{5}, 2 \mathrm{H}$), 8.24 (s, $\mathrm{ArH}^{4} .2 \mathrm{H}$). Anal. ($\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{8}$) C, H .
2,3:4,5-Bis[1,2-(3-chloromethylnaphtho)]-1,6,9,12,15,18-hexa-oxacycloeicosa-2,4-diene (10). Procedure B. This procedure is superior to that reported previously. ${ }^{3 \mathrm{~b}}$ To a mixture of macrocyclic diol $4^{3 \mathrm{~b}}$ ($2.40 \mathrm{~g}, 4.37 \mathrm{mmol}$) and 50 mL of anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}$ stirred at $25^{\circ} \mathrm{C}$ under N_{2} was added dropwise (5 min) a solution of $4.51 \mathrm{~g}(38 \mathrm{mmol})$ SOCl_{2} (distilled from triphenyl phosphite) in 5 mL of anhydrous benzene. The reaction mixture was stirred for 15 min at $25^{\circ} \mathrm{C}$ and was heated to reflux for 30 min . Solvent was evaporated under reduced pressure, and the residue was dissolved in 125 mL of $\mathrm{Et}_{2} \mathrm{O}$. The solution was successively washed with 5% aqueous NaHCO_{3} (three $50-\mathrm{mL}$ portions) and saturated NaCl (two $50-\mathrm{mL}$ portions). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated to give a white solid, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{Et}_{2} \mathrm{O}$ to yield 10: $2.4 \mathrm{~g}(92 \%)$: mp $109-110.5^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.9.-3.9 $\left(\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 4.86\left(\nu_{\mathrm{a}}\right)$ and $5.17\left(\nu_{\mathrm{b}}\right)(\mathrm{AB}, J=12$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Cl}, 4 \mathrm{H}\right), 6.96-7.60(\mathrm{~m}, \mathrm{ArH}, 6 \mathrm{H}) .7 .75-8.00(\mathrm{~m}, \mathrm{ArH}, 2$ H), 8.12 (broad s, ArH, 2 H). The analysis of this compound has been previously reported. 3 b

2,3:4,5-Bis $\{1,2$-(3-(2-oxo-1,3-diaza-3-methylcyclohexylmethyl)naphtho $]\}-1,6,9,12,15,18$-hexaoxacycloeicosa-2,4-diene (11). From $5.0 \mathrm{~g}(50 \mathrm{mmol})$ of $2(1 \mathrm{H})$-tetrahydropyrinidone (Eastman), 2.40 g of NaH (50% mineral dispersion, 50 mmol). 250 mL of dry dimethoxycthane, and $7.10 \mathrm{~g}(50 \mathrm{mmol})$ of methyl iodide was prepared 0.60 $g(\sim 10 \%)$ of N-methyl- N, N^{\prime}-trimethyleneurea, mp $90.5-92.5^{\circ} \mathrm{C}$ (lit. $.^{10} 86-89^{\circ} \mathrm{C}$). A mixture of $0.24 \mathrm{~g}(2.1 \mathrm{mmol})$ of this material, 0.101 g of NaH (2.096 mmol , as a 50% dispersion), and 25 mL of THF was refluxed under N_{2} until H_{2} evolution ceased. The reaction mixture was cooled to $25^{\circ} \mathrm{C}$, and bis(chloromethyl) macrocycle 10 (0.300 g , 0.515 mmol) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 36 h . the solvent was evaporated under reduced pressure, and the residue was shaken with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and 1 N $\mathrm{HCl}(20 \mathrm{~mL})$. The organic phase was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and solvent was evaporated under reduced pressure to give a light yellow foam. This material was chromatographed on 50 g of MCB $80-325$ mesh basic;alumina. Elution of product with $1 \% \mathrm{EtOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(v)$ came between 140 and 240 mL . This material was further purified by gel permeation chromatography on column Λ, compound 11 having a retention volume of 161 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This product was isolated as a white foam, $268 \mathrm{mg}(70 \%): \mathrm{M}^{+} m / e 740 ;{ }^{1} \mathrm{H}, \mathrm{NMR}(60 \mathrm{MHz}$. $\left.\mathrm{CDCl}_{3}\right) \delta 1.77-2.30\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 4 \mathrm{H}\right), 3.05\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right)$, $3.0-4.2\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.\mathrm{NCH}_{2}, 28 \mathrm{H}\right), 4.95$ (broad s, $\mathrm{ArCH}_{2} \mathrm{~N}$, $4 \mathrm{H}), 7.00-7.53(\mathrm{~m}$, ArH, 6 H$), 7.77-8.07(\mathrm{~m}, \mathrm{ArH}, 4 \mathrm{H})$: IR $\left(\mathrm{CHCl}_{3}\right) 1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis[1,2-(3-diethoxyoxophosphinylmethyl)]-1,6,9,12,15,18-hexaoxacycloeicosa-2.4-diene (12). Procedure C. A mixture of 1.7 g (2.9 mmof) of bis(chloromethyl) macrocycle 10 and 10 mL of tricthyl phosphite was heated under \mathcal{N}_{2} with stirring at $165^{\circ} \mathrm{C}$ for 2 h . The excess triethyl phosphite was evaporated at $100^{\circ} \mathrm{C}(30 \mathrm{~mm})$ to produce a residuc of colorless oil, which was subjected to gel permeation chromatography on column A to give a retention volume for $\mathbf{1 2}$ of 168 mL . of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was isolated as a glass which was film dried at $40^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$ for 24 h to give $2.06 \mathrm{~g}(90 \%)$: $\mathrm{M}^{+} \mathrm{m} / \mathrm{e} 788$; ${ }^{1} \mathrm{H} N \mathrm{NR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30\left(\mathrm{~m}, \mathrm{CH}_{3}, 12 \mathrm{H}\right), 3.51(\mathrm{~m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{ArCH}_{2}, 24 \mathrm{H}\right), 4.08\left(\mathrm{~m}, \mathrm{POCH}_{2}, 8 \mathrm{H}\right), 7.18(\mathrm{~m}, \mathrm{ArH}$,
$6 \mathrm{H}) .7 .80\left(\mathrm{~m}, \mathrm{ArH}^{5}, 2 \mathrm{H}\right) .8 .10$ (d, ArH $\left.{ }^{4}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{12} \mathrm{P}_{2}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis[1,2 -(3-diethoxyoxophosphinylmethylnaphtho)]-$1,6,9,12,15,18,21$-heptaoxacyclotricosa-2,4-diene (13). By procedure B, 3.0 g (5.1 mmol) of 2,3:4,5-bis[1,2-(3-hydroxymethylnaphtho)]-1,6,9,12,15,18,21-heptaoxacyclotricosa-2,4-diene ${ }^{3 b}$ dissolved in 300 mL of $\mathrm{C}_{6} \mathrm{H}_{6}$ and $10 \mathrm{~g}(84 \mathrm{mmol})$ of SOCl_{2} was converted in 88% yield to 2,3:4,5-bis[1,2-(3-chloromethylnaphtho)]-1,6,9,12,15,18,21-heptaoxacyclotricosa-2,4-diene. isolated as a glass; $\mathrm{M}^{+} \mathrm{m} / \mathrm{e} 628$ $\left({ }^{35} \mathrm{Cl}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.52\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O} .24 \mathrm{H}\right)$. 4.98 (AB q. $\left.\mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 7.21(\mathrm{~m}, \mathrm{ArH}, 6 \mathrm{H}), 7.81\left(\mathrm{~m}, \mathrm{ArH}^{5}, 2 \mathrm{H}\right)$, $8.05\left(\mathrm{~s}, \mathrm{ArH}^{4}, 2 \mathrm{H}\right)$. By procedure C. $1.4 \mathrm{~g}(2.2 \mathrm{mmol})$ of this dichloride and 8 mL of triethyl phosphite was converted to diphosplinate 13, which on gel permeation on column A gave a retention volume of 161 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The substance was isolated as a glass and film dried at $40^{\circ} \mathrm{C}$ under 0.01 mm for 24 h to give $1.80 \mathrm{~g}(97 \%)$ of $13: \mathrm{M}^{+}$ $m / e 832 ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29\left(\mathrm{~m}, \mathrm{CH}_{3}, 12 \mathrm{H}\right), 3.59$ $\left(\mathrm{m}, \mathrm{ArCH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 28 \mathrm{H}\right), 4.11\left(\mathrm{~m}, \mathrm{POCH}_{2}, 8 \mathrm{H}\right), 7.16(\mathrm{~m}$. $\mathrm{ArH}, 6 \mathrm{H}), 7.86\left(\mathrm{~m}, \mathrm{ArH}^{5}, 2 \mathrm{H}\right), 8.13\left(\mathrm{~d}, \mathrm{ArH}^{4}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{P}_{2}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis $\{1,2-\{3$-(α-pyridylthiamethyl) naphtho\}\}-1,6,9,12,15,18-hexaoxacycloeicosa-2,4-diene (14). A solution of 291 mg (7.27 mmol) of NaOH in 1 mL of water was added to a solution of $808 \mathrm{mg}(7.2$ mmol) of 2 -mercaptopyridine dissolved in 8 mI . of DMF. Dichloride $10(1.0 \mathrm{~g}, 1.7 \mathrm{mmol})$ dissolved in 10 mL of DMF was added. The mixture was stirred for 3 h at ambient temperature, the solvent was evaporated at 1 mm of pressure, and the residue was shaken with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (100 mL each). The organic layer was washed with 50 mL of 15% aqueous NaOH . dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure, and the residue was chromatographed on 40 g of silica gel. The column was washed with 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the product was eluted with $2 \% \mathrm{EtOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v). Compound $\mathbf{1 4}$ was isolated as an amorphous wax after being dried for 24 h at $165^{\circ} \mathrm{C}(0.1$ $\mathrm{mm})$, wt $450 \mathrm{mg}(36 \%)$: $\mathrm{M}^{+} \mathrm{m} / e$ 734: ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.0-4.0\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 5.12\left(\mathrm{~s}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 6.8-8.0(\mathrm{~m}$, ArH, 16 H$), 8.07$ (s, ArH, 2 H). Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}$.

2,3:4,5-Bis $\{1,2$-[3-(3α-pyridyl-2-oxapropyl)naphtho]\}-$1,6,9,12,15,18$-hexaoxacycloeicosa-2,4-diene (15). Freshly distilled 2-hydroxymethylpyridine ($1.09 \mathrm{~g}, 10 \mathrm{mmol}$, Aldrich) in 25 mL of THF was added dropwise to a suspension of NaH (480 mg .10 mmol , suspension in mineral oil) stirred under N_{2} in 5 mL of THF. After the evolution of H_{2} ceased (15 min). $1.5 \mathrm{~g}(2.6 \mathrm{mmol})$ of dichloride 10 in 15 mL of THF was added, and the resulting mixture was refluxed for 12 h under N_{2}. The solvent was removed under reduced pressure, and the residue was shaken with a mixture of 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 100 mL of $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure, and the residue was chromatographed on 65 g of alumina. Elution of the product with $2 \% \mathrm{EtOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v) gave 1.55 g of material which was submitted to column C gel permeation chromatography: retention volume 170 mL of THF: wt 1.25 $\mathrm{g}(66 \%) ; \mathrm{M}^{+} m / e 730 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.0-4.0(\mathrm{~m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 4.87$ ($\mathrm{s}, \mathrm{ArCH}_{2}, 4 \mathrm{H}$). 5.01 ($\mathrm{s}, \mathrm{ArCH}_{2} .4 \mathrm{H}$), 7.0-7.8 (m, ArH. 8 H), 7.6-8.0 (m, ArH, 6 H), 8.13 (s, ArH, 2 H), 8.5-8.7 (m, ArH, 2 H). Anal. $\left(\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{8} \mathrm{~N}_{2}\right) \mathrm{C} . \mathrm{H}$.

2,2'-Dimethoxy-3, $\mathbf{3}^{\prime}$-bis(hydroxymethyl)-1,1'-binaphthyl (16). To a solution of $25 \mathrm{~g}(72.3 \mathrm{mmol})$ of $2,2^{\prime}$-dillydroxy- $3,3^{\prime}$-bis(hydrox-ymethyl)-1, 1^{\prime}-binaphthyl in 800 mL of acetone at $60^{\circ} \mathrm{C}$ stirred under N_{2} was added $25 \mathrm{~g}(181 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ followed by 50 g (352 mmol) of $\mathrm{CH}_{3} \mathrm{l}$. The mixture was refluxed for 36 h , evaporated to $200-\mathrm{mL}$ volume, cooled, and shaken with 500 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with two $100-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated to 150 mL volume, and diluted with 200 mL of benzene. The product crystallized at $25^{\circ} \mathrm{C}$ to give $24.3 \mathrm{~g}(90 \%)$ of $\mathbf{1 6}: \mathrm{mp}$ $178-179{ }^{\circ} \mathrm{C} ; \mathrm{M}^{+} m / e 374 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~m}$, $\mathrm{OH}, 2 \mathrm{H}), 3.38\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 4.91\left(\mathrm{~m}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 7.21(\mathrm{~m}, \mathrm{ArH}$, $6 \mathrm{H}) ; 7.80(\mathrm{~m}, \mathrm{ArH}, 2 \mathrm{H}) .7 .88\left(\mathrm{~s}, \mathrm{ArH}^{4} .2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}\right) \mathrm{C}$. H.

2,2'-Dimethoxy-3,3'-bis(diethoxyoxyphosphinylmethyl)-1.1'-binaphthyl (17). By procedure $B, 10.0 \mathrm{~g}(26.7 \mathrm{mmol})$ of diol $16,20 \mathrm{~g}(168$ mmol) of SOCl_{2}, and 400 mL of benzene provided $9.8 \mathrm{~g}(89 \%)$ of 2, 2'-dimethoxy-3,3'-bis(chloromethyl)-1, 1^{\prime}-binaphthyl: mp 142-143 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-cyclohexane); $\mathrm{M}^{+} m / e 410\left({ }^{35} \mathrm{Cl}\right) ;{ }^{1} \mathrm{H}$ NMR (60 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.33\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right) .4 .95\left(\mathrm{ABq}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right) .7 .33$ $(\mathrm{m}, \mathrm{ArH}, 6 \mathrm{H}), 7.90(\mathrm{~m}, \mathrm{ArH}, 2 \mathrm{H}), 8.07\left(\mathrm{~s}, \mathrm{ArH}^{4}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$.

By procedure C, $2.0 \mathrm{~g}(4.9 \mathrm{mmol})$ of the above dichloride and 8 mL of triethyl phosphite gave $2.4 \mathrm{~g}(80 \%)$ of 17 as an oil: $\mathrm{M}^{+} m / e 614{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30\left(\mathrm{~m}, \mathrm{CH}_{3}, 12 \mathrm{H}\right), 3.32\left(\mathrm{~s}, \mathrm{OCH}_{3} .6\right.$ H), 3.73 ($\mathrm{m}, \mathrm{ArCH}_{2}, 4 \mathrm{H}$), $4.14\left(\mathrm{~m}, \mathrm{OCH}_{2}, 8 \mathrm{H}\right), 7.25(\mathrm{~m}, \mathrm{ArH}, 6$ H), $7.91\left(\mathrm{~m}, \mathrm{ArH}^{5}, 2 \mathrm{H}\right), 8.12$ (d. $\left.\mathrm{ArH}^{4}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{P}_{2}\right) \mathrm{C} . \mathrm{H}$.

2,3:4,5-Bis $[1,2-(5,6,7,8$-tetrahydronaphtho) $]$ - $\mathbf{1 , 6 , 9 , 1 2 , 1 5 - p e n t a - ~}$ oxacycloheptadeca-2,4-diene (18). To a hot solution of 10 g (22.5 mmol) of $2,3: 4,5$-bis(1,2-naphtho)-1,6,9,12,15-pentaoxacyclohep-tadeca-2,4-diene ${ }^{5}$ dissolved in 1 L of glacial acetic acid was added 1 g of PtO_{2}, and the mixture was shaken in an atmosphere of H_{2} for 7 days at $25^{\circ} \mathrm{C}$. The mixture was filtered and the filtrate was shaken with 1 L of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 L of $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with three 1-L portions of $\mathrm{H}_{2} \mathrm{O}$ and two I-L portions of 10% aqueous NaHCO_{3} solution. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure, and the residue was chromatographed on 50 g of alumina $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was eluted with 3 L of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $9.7 \mathrm{~g}(95 \%)$ of 18 as an oil, which was film dried at $50^{\circ} \mathrm{C}$ for 25 h at $0.01 \mathrm{~mm}: \mathrm{M}^{+} m / e 452 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.63$ ($\mathrm{m}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}, 8 \mathrm{H}$), $2.14\left(\mathrm{~m}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 2.70\left(\mathrm{~m}, \mathrm{ArCH}_{2} .4\right.$ H). $3.68\left(\mathrm{~m}_{1}, \mathrm{OCH}_{2}, 16 \mathrm{H}\right) 6.83(\mathrm{AB} \mathrm{q}, \mathrm{ArH}, 4 \mathrm{H})$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5}\right)$ C, H .
2,3:4,5-Bis [1,2-(3-chloromethyl-5,6,7,8-tetrahydronaphtho)]-$1,6,9,12,15$-pentaoxacyeloheptadeca-2,4-diene (19). To a solution of $9.0 \mathrm{~g}(19.9 \mathrm{mmol})$ of macrocycle 18 dissolved in 500 mL of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{CHCl}_{3}(4: 1, v)$ at $55^{\circ} \mathrm{C}$ were added $18 \mathrm{~g}(0.60 \mathrm{~mol})$ of formaldchyde and 98 g of concentrated hydrochloric acid. The mixture was stirred at $65^{\circ} \mathrm{C}$ for 3 h , cooled, and shaken with 300 mL of CHCl_{3} and I L of $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with three I-L portions of $\mathrm{H}_{2} \mathrm{O}$ and two 1-L portions of $10 \% \mathrm{NaHCO}_{3}$ aqueous solution and dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was evaporated under reduced pressure, and the residue was chromatographed on 150 g of silica $\mathrm{gel}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The column was washed with 2 L of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the product eluted with $5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v) to give, after film drying for 24 h at 25 ${ }^{\circ} \mathrm{C}$ and $0.01 \mathrm{~mm}, 7.3 \mathrm{~g}(67 \%)$ of 19 as a glass: $\mathrm{M}^{+} \mathrm{m} / \mathrm{e} 548\left({ }^{35} \mathrm{Cl}\right)$: ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68\left(\mathrm{~m}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C}, 8 \mathrm{H}\right), 2.18(\mathrm{~m}$, $\left.\mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 2.77\left(\mathrm{~m}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 3.60\left(\mathrm{~m}, \mathrm{OCH}_{2}, 16 \mathrm{H}\right), 4.85$ ($\mathrm{ABq}, \mathrm{ArCH}_{2} \mathrm{Cl}, 4 \mathrm{H}$), $7.10(\mathrm{~s}, \mathrm{ArH}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{O}_{5}\right) \mathrm{C}$, H.

2,3:4,5-Bis [1,2-(3-diethoxyoxophosphinylmethyl-5,6,7,8-tetrahy-dronaphtho)]-1,6,9,12,15-pentaoxacycioheptadeca-2,4-diene (20). By procedure C, 2.0 g (3.6 mmol) of dichloride 19 and 10 mL of triethyl phosphite was converted to $\mathbf{2 0}$, which was purified by gel permeation
 The compound was isolated as a glass. film dried at $40^{\circ} \mathrm{C}$ for 24 h at $0.01 \mathrm{~mm}, 2.3 \mathrm{~g}(84 \%): \mathrm{M}^{+} m / e ~ 752 ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.29\left(\mathrm{~m}, \mathrm{CH}_{3} .12 \mathrm{H}\right) .1 .68\left(\mathrm{~m}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{C} .8 \mathrm{H}\right) .2 .17\left(\mathrm{~m}, \mathrm{ArCH}_{2}\right.$. $4 \mathrm{H}), 2.78\left(\mathrm{~m}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 3.74\left(\mathrm{~m}, \mathrm{OCH}_{2}, \mathrm{ArCH}_{2}, 28 \mathrm{H}\right), 7.13$ (d, $J=3.8 \mathrm{~Hz}, \mathrm{ArH}, 2 \mathrm{H}$) Anal. ($\left.\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{O}_{11} \mathrm{P}_{2}\right) \mathrm{C}, \mathrm{H}$.
meso-Dimethyl Tartrate 2,3-Acetonide. Procedure D. A mixture of $25 \mathrm{~g}(0.15 \mathrm{~mol})$ of meso-tartaric acid monohydrate. $40 \mathrm{~mL}(0.38$ mol) of 2,2 -dimet hoxypropane, 10 mL of $\mathrm{CH}_{3} \mathrm{OH}$, and 0.2 g of p toluenesulfonic acid was heated with stirring at $50^{\circ} \mathrm{C}$ for 45 min . An additional 20 mL of 2,2 -dimethoxypropane and 114 mL of cyclohexane were added. Over a 24 -h period, 125 mL of distillate (bp ca. $45^{\circ} \mathrm{C}$) was collected by conducting a slow, fractional distillation through an $18-\mathrm{in}$. Vigreux column packed with $1 / 4-\mathrm{in}$. glass rings. The product was distilled to give 30.9 g (95%) of product: bp t0t-103 ${ }^{\circ} \mathrm{C}$ (1.5 mmin); $\mathrm{M}^{+}-15, \mathrm{~m} / \mathrm{e} 203$; ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.4(\mathrm{~s}$, $\mathrm{CH}_{3}, 3 \mathrm{H}$), 1.6 ($\mathrm{s}, \mathrm{CH}_{3}, 3 \mathrm{H}$), 3.7 ($\mathrm{s}, \mathrm{OCH}_{3}, 6 \mathrm{H}$), 5.8 ($\mathrm{s}, \mathrm{CH}, 2 \mathrm{H}$). Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.
(R, S) $\mathbf{1}$ 1,2,3,4-Butanetetrol 2,3-Acetonide. Procedure E. To a solution of $7.0 \mathrm{~g}(0.18 \mathrm{~mol})$ of LiAlH_{4} in 150 mL of anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise with stirring under N_{2} a solution of $30 \mathrm{~g}(0.14 \mathrm{~mol})$ of meso-dimethyl tartrate 2,3-acetonide in 150 mL of anhydrous $\mathrm{Et}_{2} \mathrm{O}$. Gentle reflux was maintained. Addition took 1 h , after which the mixture was refluxed for 8 h and cooled to $25^{\circ} \mathrm{C}$. The excess 1.i AlH_{4} was decomposed with 1:1:3 (v) mixture of $\mathrm{H}_{2} \mathrm{O}-15 \%$ aqueous $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}$, the mixture was filtered, and the salts were extracted for 24 h in a Soxhlet extractor with ether. The combined extract and filtrate were combined. the solvent was evaporated under reduced pressure, and the residue was distilled to give $17.7 \mathrm{~g}(79 \%)$ of product: bp $120^{\circ} \mathrm{C}(2 \mathrm{~mm})$; $\mathrm{M}^{+}-15, \mathrm{~m} / \mathrm{e} 147 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.35\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), \mathrm{I} .43\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.5-4.8\left(\mathrm{~m}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{OH}\right.$, 8 H). This material was used in the next step without further purification or characterization.
(R, S)-1,8-Diphenyl-2,7-dioxa-4,5-octanediol 4,5-Acetonide. Procedure \mathbf{F}. A solution of $5.0(30.9 \mathrm{mmol})$ of (R, S)-1,2,3,4-butanetetrol 2,3-acetonide in 50 mL of THF was added dropwise to a mixture stirred under N_{2} of $\mathrm{NaH}(3.3 \mathrm{~g}, 69 \mathrm{mmol})$ and 10 mL of THF. After the mixture had stirred for 30 min , benzyl bromide ($21.0 \mathrm{~g}, 0.123 \mathrm{~mol}$) was added in a solution of 50 mL of THF, and the solution was refluxed for 12 h . The mixture was filtered and the precipitate washed with THF. The filtrates were combined, the solvent was evaporated under reduced pressure, and the residue was chromatographed on silica gel with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient mixtures to yield, after evaporation and drying at $50^{\circ} \mathrm{C}(0.1 \mathrm{~mm}), 10 \mathrm{~g}(94 \%)$ of product as an oil suitable for use in the next step. An analytical sample was prepared by molecular distillation ($120-140^{\circ} \mathrm{C}, 0.1 \mathrm{~mm}$): $\mathrm{M}^{+} \mathrm{m} / \mathrm{e} 342$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{I} .3\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.4\left(\mathrm{~s}, \mathrm{CH}_{3} .3 \mathrm{H}\right)$, 3.4-3.6 ($\mathrm{m}, \mathrm{CHCH}_{2}, 4 \mathrm{H}$), 4.2-4.4 (m, CH, 2 H), 4.4, ($\mathrm{s}, \mathrm{ArCH}_{2}, 4$ H), 7.3 (s. $\mathrm{ArH}, 10 \mathrm{H}$). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(R, S)-4,5-Dihydroxy-1,8-diphenyl-2,7-dioxaoetane. Procedure G. A mixture of $22.0 \mathrm{~g}(64 \mathrm{mmol})$ of (R, S)-1,8-diphenyl-2,7-dioxa4.5 -octanediol 4,5 -acetonide was dissolved in a mixture of 250 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and 20 mL of $10 \% \mathrm{HCl}$ and stirred for 12 h . The solvent was evaporated under reduced pressure at $25^{\circ} \mathrm{C}$ or lower, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL). The solution was dried (MgSO_{4}). the solvent was evaporated, and the residual oil was solidified. This material was sublimed at $150^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ to give $18.2 \mathrm{~g}(93 \%)$ of product used in the next step. An analytical sample was recrystallized from cyclohexane to give white prisms: mp $56-57.5^{\circ} \mathrm{C} ; \mathrm{M}^{+} m / e$ 302: ${ }^{\prime} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.8-3.0$ (broad s, $\mathrm{OH}, 2 \mathrm{H}$), 3.5-4.0 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}, 6 \mathrm{H}$), 4.5 ($\mathrm{s}, \mathrm{ArCH}_{2}, 4 \mathrm{H}$), 7.3 ($\mathrm{s}, \mathrm{ArH}, 10 \mathrm{H}$). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(R, S)-2,3-Bis(benzyloxymethyl)-1,4,7,10,13,16-hexaoxacyelooctadecane (22). A mixture of $1.8 \mathrm{~g}(6.0 \mathrm{mmol})$ of (R, S) -4.5 -dihy-droxy-1,8-diphenyl-2,7-dioxaoctane, 140 mL of THF, and 0.6 g (15 mmol) of NaH was stirred under argon at reflux for 10 min . Pentacthylene glycol ditosylate ${ }^{2 b}(3.3 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added in a solution of 100 mL of THF, and the resulting mixture was refluxed for 48 h . The excess NaH was carefully decomposed with 1 mL of $\mathrm{H}_{2} \mathrm{O}$, the solvent was evaporated under reduced pressure, and the residue was shaken with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water (200 mL each). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue was submitted to alumina dry column chromatography with $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The macrocycle was further purified by gel permeation chromatography on column A, retention volume 177 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give after drying at $50^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$ for 24 h product 22 as a coloriess oil: 1.0 $\mathrm{g}(33 \%) ; \mathrm{M}^{+} \mathrm{m} / \mathrm{e} 504 ;{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.4-4.0(\mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{CH}, 26 \mathrm{H}$), 4.5 ($\mathrm{s}, \mathrm{ArCH}_{2}, 4 \mathrm{H}$), 7.3 ($\mathrm{s}, \mathrm{ArH}, 10 \mathrm{H}$), Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}$.
(S,S)-(+)-Dimethyl Tartrate 2,3-Acetonide. Application of procedure D to $101 \mathrm{~g}(0.67 \mathrm{~mol})$ of $(+)$-tartaric acid, $160 \mathrm{~g}(1.54 \mathrm{~mol})$ of 2.2-dimethoxypropane, 40 mL of methanol, and 0.4 g of p-toluenesulfonic acid gave $126 \mathrm{~g}(85 \%)$ of product: bp $85^{\circ} \mathrm{C}(0.15 \mathrm{~mm})$ (lit. ${ }^{11}$ $82-90^{\circ} \mathrm{C}(0.02 \mathrm{~mm})$): ${ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$. $6 \mathrm{H}), 3.78\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}, 6 \mathrm{H}\right), 4.77(\mathrm{~m}, \mathrm{CH}, 2 \mathrm{H}) ;[\alpha]_{55}^{25}-58.2^{\circ}$ (ncat) (lii. $1^{11}[\alpha]^{25},-53.1^{\circ}$ (neat)).
(S.S)-1,2,3,4-Butanetetrol 2,3-Acetonide. Application of procedürc E to $124 \mathrm{~g}(0.57 \mathrm{~mol})$ of ($S . S$)-(+)-dimethyl tartrate 2,3 -acetonide, $28 \mathrm{~g}(0.74 \mathrm{~mol})$ of LiAlH_{4}, and 1.2 L of anhydrous cther gave 58 g (63%) of product: bp $95^{\circ} \mathrm{C}\left(0.15 \mathrm{~mm}\right.$) (lit..$^{12} 93^{\circ} \mathrm{C}$); $\mathrm{M}^{+}{ }^{\mathrm{m}} \mathrm{m} / \mathrm{e} 162$; ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, . \mathrm{CDCl}_{3}$) $\delta 1.42$ (s. $\mathrm{CH}_{5} .6 \mathrm{H}$). 2.7-2.9 (broad s. CH, 2 H), 3.7-3.9 (broad m, CH2, 4 H1), 4.0-4.2 (broad m, CH, 2 H);
 $5, \mathrm{CHCl}_{3}$).
(S,S)-1,8-Diphenyl-2,7-dioxa-4,5-octanediol 4,5-Acetonide. Application of procedure F to $18 \mathrm{~g}(0.11 \mathrm{~mol})$ of (S, S)-1,2,3,4-butanetetrol 2.3 -acetonide. 19 g of $\mathrm{NaH}(0.32 \mathrm{~mol}), 250 \mathrm{~mL}$ of THF, and $76 \mathrm{~g}(0.44 \mathrm{~mol})$ of benzyl bromide gave crude product from which the excess benzyl bromide was distilled at $30^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. The residue was chromatographed on 200 g of silica gel, and product was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 36 g (94%) of product used in the next step. A small sample was subjected to molecular distillation at $120-140^{\circ} \mathrm{C}$ $(0.01 \mathrm{~mm}) ; \mathrm{M}^{+} \mathrm{ni} / \mathrm{e} 342:{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$, 6 H), 3.5-3.7 (m, CH2CH. 4 H), 3.9-4.1 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}, 2 \mathrm{H}$), $4.50(\mathrm{~s}$, $\left.\mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 7.20(\mathrm{~s}, \mathrm{ArH}, 10 \mathrm{H}) ;[\alpha]_{5}^{\frac{25}{5} 8}-6.5^{\circ},[\alpha]_{546}^{25}-7.2^{\circ},[\alpha]_{4, ~}^{25} \mathrm{~F}$ $-10.1^{\circ}\left(c 5.7, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(S,S)-4,5-Dihydroxy-1,8-diphenyi-2,7-dioxaoctane. Application of procedure G to $36.6 \mathrm{~g}(0.1) \mathrm{mol})$ of ((S, S)-1,8-diphenyl-2,7-dioxa-4,5-octanediol 4,5 -acetonide, 250 mL of methanol, and 50 mL
of $5 \% \mathrm{HCl}$ in water gave product which was sublimed in $10-\mathrm{g}$ batches at $130-150^{\circ} \mathrm{C}(0.08 \mathrm{~mm})$ to give $27 \mathrm{~g}(93 \%)$ of product: $\mathrm{mp} 55-57$ ${ }^{\circ} \mathrm{C}: \mathrm{M}^{+} m / e 302 ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.8($ broad s, OH, $2 \mathrm{H}), 3.4-3.6\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}, 4 \mathrm{H}\right), 3.7-3.9\left(\mathrm{~m}, \mathrm{CHCH}_{2}, 2 \mathrm{H}\right), 4.5(\mathrm{~s}$, $\left.\mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 7.28(\mathrm{~s}, \mathrm{ArH}, 10 \mathrm{H}) ;[\alpha]_{578}^{25}-6.1^{\circ},[\alpha]_{546}^{25}-6.9^{\circ},[\alpha]_{436}^{25}$ $-11.5^{\circ}\left(c \cdot 5, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
(,S,S)-2,3-Bis(benzyloxymethyl)-1,4,7,10,13,16-hexaoxacyclooctadecane (23). To a suspension stirred under N_{2} of $\mathrm{NaH}(2.52 \mathrm{~g}, 52.4$ mmol) in 200 mL of DMF was added dropwise (30 min) $7.2 \mathrm{~g}(23.8$ 1 mmol) of (S, S)-4,5-dihydroxy-1,8-diphenyl-2,7-dioxaoctane dissolved in 240 mL of DMF. The solution was heated to $55^{\circ} \mathrm{C}$ until H_{2} evolution ceased (45 min). Pentaethylene glycol ditosylate ${ }^{2 \mathrm{~b}}$ ($13.0 \mathrm{~g}, 23.8$ mmol) in 120 mL of DMF was added, and the reaction mixture was stirred under N_{2} at $65-75^{\circ} \mathrm{C}$ for 36 h . The solvent was evaporated at 1 mm of pressure, and the residue was distributed between 200 mL cach of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The water layer was extracted with 100 mL of $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated under reduced pressure. The residue was chromatographed on alumina with a gradient elution of $\mathrm{Et}_{2} \mathrm{O}$ to 5% acetone in $\mathrm{Et}_{2} \mathrm{O}(\mathrm{v})$. The product was submitted to gel permeation chromatography on column A , and was eluted with a retention volume of 165 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield after drying at $50^{\circ} \mathrm{C}(1 \mathrm{~mm})$ for 24 h $4.2 \mathrm{~g}(35 \%)$ of $(S, S)-23 ; \mathrm{M}^{+} m / e 504 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס $3.5-3.9\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{OCH}, 26 \mathrm{H}\right), 4.5\left(\mathrm{~s}, \mathrm{ArCH}_{2}, 4 \mathrm{H}\right), 7.3$ $(s, \mathrm{ArH}, 10 \mathrm{H}):[\alpha]^{\frac{25}{5} 78}+2.77^{\circ} ;[\alpha]_{436}^{25}+5.0^{\circ}\left(c 6.8, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{8}\right) \mathrm{C} . \mathrm{H}$.
(R, S)-1,6,9,12,15,18-Hexaoxacycloeicosane-3,4-diol Acetonide (27). Procedure H. To a solution of $0.3164 \mathrm{~g}(1.95 \mathrm{mmol})$ of $(R . S)$ -1,2,3,4-butanetetrol 2,3-acetonide in 20 mL of DMF stirred under N_{2} was added $0.3 \mathrm{~g}(7.5 \mathrm{mmol})$ of a 50% suspension of NaH in mineral oil mixed with 10 mL of DMF. The solution was heated to $70^{\circ} \mathrm{C}$ until H_{2} evolution ceased. A solution of $1.06 \mathrm{~g}(1.95 \mathrm{mmol})$ of pentaethylene glycol ditosylate ${ }^{2 b}$ in 10 mL of DMF was added. The mixture was stirred under N_{2} at $70^{\circ} \mathrm{C}$ for 48 h and cooled, and 1 mL of water was added. The solvent was evaporated under vacuum. The residue was shaken with $200-\mathrm{mL}$ portions of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was washed with two $50-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated under vacuum to give a yellow oil. This material was passed through an alumina dry column (14 by 1 in.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for an initial purification, and was then submitted to gel permeation chromatography on column A. Macrocycle eluted with a retention volume of 185 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated under reduced pressure to give, after film drying at $50^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ for $24 \mathrm{~h}, 0.251 \mathrm{~g}(35 \%)$ of $27: \mathrm{M}^{+}$ $m / e 364 ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.3\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 1.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$. $3 \mathrm{H}), 3.6\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{OCH} \mathrm{O}_{2}, 24 \mathrm{H}\right), 4.1-4.4(\mathrm{~m}, \mathrm{CH}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{8}\right) \mathrm{C} . \mathrm{H}$.
(R, S)-1,6,9,12,15,18-Hexaoxacycloeicosane-3,4-diol (28). A solution of $0.217 \mathrm{~g}(0.596 \mathrm{mmol})$ of macrocycle 27 in 50 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and 5 mL of 5% aqueous HCl was stirred at $25^{\circ} \mathrm{C}$ for 10 h . The solvent was evaporated under vacuum until the solution became cloudy. Water (200 mL) was added, and the mixture was continuously extracted with CHCl_{3} for 14 h . The CHCl_{3} solution was dried (MgSO_{4}); the solvent was evaporated under reduced pressure and film dried at $30^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$ for 20 h to give $0.178 \mathrm{~g}(95 \%)$ of diol 28 as an oil: $\mathrm{M}^{+} m / e 324 ;{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.2$ (broad s. OH, 2 H), 3.7-3.8 ($\mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}, 26 \mathrm{H}$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{8}\right) \mathrm{C}, \mathrm{H}$. This material was very air sensitive, and had to be stored under argon or used immediately.
(R, S)-3,6,9,12,15,18,21,24,27,30,33,36-Dodecaoxabicy-
clo 18.16 .0 hexatriacontane (26). By procedure $\mathrm{H}, 0.170 \mathrm{~g}$ (0.525) mmol) of (R, S)-1,6,9,12,15,18-hexaoxacycloeicosane-3,4-diol (28), $0.286 \mathrm{~g}(0.525 \mathrm{mmol})$ of pentaethylene glycol ditosylate, ${ }^{2 b} 0.10 \mathrm{~g}$ of NaH (2 mmol as a 50% dispersion in mineral oil), and 50 mL of DMF was converted at $70^{\circ} \mathrm{C}(48 \mathrm{~h})$ to crude product. This material was chromatographed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a silica gel dry column. The appropriate eluate fractions were submitted to gel permeation chromatography on column A. The product gave a retention volume of 153 mL , and was film dried at $40^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$ for 24 h to give 26 as an oil: $95.6 \mathrm{mg}(35 \%)$; $\mathrm{M}^{+} m / e 526 ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) \delta 3.6$ (m). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{12}\right) \mathrm{C}, \mathrm{H}$.
meso- and $d / 1$-1,2-Bis(2-chlorophenyl)-1,2-ethanediol. To a solution of $20 \mathrm{~g}(0.074 \mathrm{~mol})$ of crude 1,2-bis(2-chlorophenyl)-2-hydroxyethanone ${ }^{14}$ in 200 mL of $95 \% \mathrm{EtOH}$ stirred at $0^{\circ} \mathrm{C}$ was added 2.0 g (0.053 mol) of NaBH_{4}. After the reaction had subsided (cooling of the flask was required), 100 mL of water was added, and the mixture
was heated at $100^{\circ} \mathrm{C}$ for 1 h while ethanol evaporated. The mixture was cooled and extracted with ether, and the ether layer was washed with brinc. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and eva porated to give 21 g of an orange oil. A 4.0 g portion of this material was chromatographed on 100 g of silica gel in 10% ether-pentane. The column was washed with 1 L of 15% ether in pentane (v), and the product eluted with 500 mL of 50% ether in pentane (v) to give a yellow oil. This material was crystallized from ether-pentane to give $1.27 \mathrm{~g}(33 \%)$ of meso diol: mp $112.5-113.5^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.67(\mathrm{~s}, \mathrm{OH}, 2 \mathrm{H})$. $5.60(\mathrm{~s}, \mathrm{CH}, 2 \mathrm{H}), 7.19(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}\right) \mathrm{C}$, H.

The mother liquor was recrystallized from the same solvent to give additional meso isomer, as well as 0.30 g (8%) of $d /$ diol: mp 105-106.5 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.67$ (broad s, $\mathrm{OH}, 2 \mathrm{H}$), 5.17 (broad s, CH, 2 H) , 7.19 (m, ArH, 8 H). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}\right) \mathrm{C}$. H.
$(R, R)(S, S)$-2,3-Bis(2-chlorophenyl)-1,4,7,10,13,16-hexaoxacyclooctadecane (25). Procedure J. A mixture of $8.0 \mathrm{~g}(28 \mathrm{mmol})$ of dl-1,2-bis(2-chlorophenyl)-1,2-ethanediol, 400 mL of THF, and 4.2 $\mathrm{g}(63 \mathrm{mmol})$ of $85 \% \mathrm{KOH}$ was stirred under N_{2}, at $25^{\circ} \mathrm{C}$ for 30 min . A solution of $15.5 \mathrm{~g}(28 \mathrm{mmol})$ of pentaethylene glycol ditosylate ${ }^{2 \mathrm{~b}}$ in 200 mL of THF was added, and the resulting mixture was refluxed for 60 h . The mixture was cooled, the solvent was evaporated under reduced pressure, and the residue was shaken with 200 mL of water and 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated under reduced pressure, and the residue was chromatographed on 250 g of alumina with 10% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v) as eluting agent. The appropriate fractions were evaporated under reduced pressure and submitted to gel permeation chromatography on column A to give a retention volume of 183 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The eluate was evaporated and the residue crystallized to give $9.3 \mathrm{~g}(68 \%)$ of $\mathbf{2 5}$. A small sample was recrystallized from ether-pentanc to give mp $77-78.5^{\circ} \mathrm{C}: \mathrm{M}^{+} \mathrm{m} / \mathrm{e} 484\left({ }^{35} \mathrm{Cl}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.3-3.8\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 5.07(\mathrm{~s}, \mathrm{ArCH}$, $2 \mathrm{H}) .7 .1-7.9(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H})$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.
(R, S)-2,3-Bis(2-chlorophenyl)-1,4,7,10,13,16-hexaoxacyelooctadecane (24). Procedure J was applied to $12.0 \mathrm{~g}(42.5 \mathrm{mmol})$ of meso-1,2-bis(2-chlorophenyl)-1,2-ethanediol, 300 mL of THF, 6.2 $\mathrm{g}(94 \mathrm{mmol})$ of $85 \% \mathrm{KOH}$ dissolved in 15 mL of $\mathrm{H}_{2} \mathrm{O}$, and $23.2 \mathrm{~g}(45.5$ mmol) of pentaethylene glycol ditosylate ${ }^{2 \mathrm{~b}}$ ($18-\mathrm{h}$ reflux). The product that was isolated from the chromatographic purification was crystallized from ether-pentane to give $7.2 \mathrm{~g}(35 \%)$ of $24: \mathrm{mp} 72-73^{\circ} \mathrm{C}$; $\mathrm{M}^{+} \mathrm{m} / e 484\left({ }^{35} \mathrm{Cl}\right) ;{ }^{1} \mathrm{H}, \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.4-3.9(\mathrm{~m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 20 \mathrm{H}\right), 5.27(\mathrm{~s}, \mathrm{ArCH}, 2 \mathrm{H}), 7.0-7.4(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H})$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}$.

Determination of Association Constants and Free Energies of Association between Ligand Systems and Metal Ammonium and Alkylammonium Picrates. Glassware used in K_{a} and K_{d} determinations was cleaned by first washing it thoroughly with water, acetone, and again water, and then immersing it in Chromerge for 24 h . The glassware was then washed with distilled water, immersed in a 15% aqueous NaHCO_{3} bath for 1 h , washed thoroughly with distilled and deionized water, and dried at $100^{\circ} \mathrm{C}$ for 24 h . Acidic or basic residues in the glassware gave erratic results. The method described previously was used. ${ }^{2 \mathrm{~d}, \mathrm{e}}$ Reasonable agreement between K_{a} values calculated from absorbances of the CDCl_{3} and of the $\mathrm{H}_{2} \mathrm{O}$ layers was found where R values were between 0.1 and 0.5 . As R values calculated from CDCl_{3} layer measurements reached the $0.6-1.0$ range, K_{a} values deviated upward from those calculated from $\mathrm{H}_{2} \mathrm{O}$ layer measurements. The latter, however, agreed well with those determined by ${ }^{1} \mathrm{H}$ NMR measurements on the CDCl_{3} layer. This deviation became increasingly greater when R values determined from $\cup V$ absorbances of the CDCl_{3} layer reached the range $0.8-1.0$, generating K_{a} values up to 10^{2} higher than those observed by the other two methods. When R values calculated from the UV aqueous laver measurements were below 0.1 , they also became unreliable. Accordingly, R, K_{a}, and $-\Delta G^{\circ}$ values reported in Table I were based on UV measurements made on the CDCl_{3} layer as long as none of the R values for the individual ions exceeded 0.5 . When any of those R values for a given host exceeded 0.5 , the R, K_{a}, and $-\Delta G^{\circ}$ values reported in Table I were based on UV measurements made on the $\mathrm{H}_{2} \mathrm{O}$ layer, except for those involving Li^{+}picrate. With this salt, the parameters were always based on CDCl_{3} layer measurements because of the relatively low R values calculated from measurements made on either layer. From the nature of the equation involved in calculating low $R_{\mathrm{CDCl}_{3}}$ values from UV measurements made on the aqueous layer, small differences between

Table III. Comparison of Values of $R_{\mathrm{CDCl}_{3}}$. K_{a}, and $-\Delta G^{\circ}$ Calculated from Measurements Made for CDCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ Layers with trans$\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(23)$ as Host

ion	CDCl_{3} phase measurements			$\mathrm{H}_{2} \mathrm{O}$ phase measurements		
	$\mathrm{R}_{\mathrm{CDCl}_{3}}$	$\begin{gathered} K_{\mathrm{a}} \times 10^{-3} \\ \mathrm{M}^{-1} \end{gathered}$	$\begin{gathered} -\Delta G^{\circ} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$R_{\mathrm{CDCl}_{3}}$	$\begin{gathered} K_{\mathrm{a}} \times 10^{-3}, \\ \mathrm{M}^{-1} \end{gathered}$	$\begin{gathered} -\Delta G^{\circ} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$
Li^{+}	0.0132	43.1	6.33	0.0144	47.2	6.37
Na^{+}	0.200	1010	8.19	0.240	1430	8.40
K ${ }^{+}$	0.756	178000	11.3	0.769	227000	11.4
Rb^{+}	0.609	30400	10.2	0.561	18700	9.93
Cs ${ }^{+}$	0.315	2010	8.59	0.290	1650	8.49
$\mathrm{NH}_{4}{ }^{+}$	0.620	19700	9.95	0.637	24100	10.1
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	0.425	875	8.10	0.419	832	8.08
t - $\mathrm{BuNH}_{3}{ }^{+}$	0.552	147	7.02	0.579	191	7.21

Table IV

| phase | aliquot.
 $\mu \mathrm{L}$ | V_{f},
 mL | A | R |
| :--- | :---: | ---: | :--- | :---: | :---: |
| CDCl_{3} | s. 10 | 5 | 2.14 | 0.844 |
| CDCl_{3} | s. 10 | 10 | 1.081 | 0.853 |
| CDCl_{3} | s, 5 | 10 | 8.544 | 0.858 |
| CDCl_{3} | s. 5 | 25 | 0.211 | 0.832 |
| $\mathrm{H}_{2} \mathrm{O}$ | s, 10 | 5 | 0.153 | 0.736 |
| $\mathrm{H}_{2} \mathrm{O}$ | m .5 | 5 | 0.148 | 0.745 |

large numbers are involved and the errors become large (see below). Table III provides the values of the R, K_{a}, and ΔG° values calculated from the two layers with trans- $\left(\mathrm{BzOCH}_{2}\right)_{2} \mathrm{E}(\mathrm{OEOEO})_{2} \mathrm{E}(23)$ as host for eight picrate salts.

A maximum random error analysis was made that included all of the physical measurements that went into determinations of K_{a} values. ${ }^{21}$ The analysis was based on the precisions of the apparatus used and the equations

$$
\begin{gather*}
K_{\mathrm{a}}=\frac{R^{*}}{K_{\mathrm{d}}\left(1-R^{*}\right)\left\{\left[\mathrm{G}_{\mathrm{i}}^{*}\right]-R^{*}\left[\mathrm{H}_{\mathrm{i}}^{*}\right]\left(V^{*} / V\right)\right\}^{2}} \tag{6}\\
K_{\mathrm{d}}=\frac{\left[\mathrm{G}^{*}\right]}{[\mathrm{G}]^{2}}=\frac{\left[\mathrm{G}^{*}\right]}{\left[\sim \mathrm{G}_{\mathrm{i}}\right]^{2}}=\frac{A D^{\mathrm{d}}}{\epsilon\left[\left[\mathrm{G}_{\mathrm{i}}\right]^{2}\right.} \tag{7}\\
R^{*}=\left(\left[\mathrm{G}_{\mathrm{i}}^{*}\right] /\left[\mathrm{H}_{\mathrm{i}}^{*}\right]\right)_{\text {equil }}=A D^{*} / \epsilon l\left[\mathrm{H}_{\mathrm{i}}^{*}\right] \tag{8}\\
R_{\mathrm{a}}^{*}=\frac{\left\{\left[\mathrm{G}_{\mathrm{i}}\right]-A D /(\epsilon l)\right\}\left(V / V^{*}\right)}{\left[\mathrm{H}_{\mathrm{i}}^{*}\right]} \tag{9}
\end{gather*}
$$

In these equations, the starred letters refer to the CDCl_{3} layer and the nonstarred to the $D_{2} O$ layer. The definitions are as follows: K_{a} and K_{d} are defined by eq 1 and 3 ; the subscripts i refer to initial concentrations, and when absent, the concentrations are those at equilibrium; G is guest, H is host, V is volume; R^{*} is the ratio, $\left[\mathrm{G}^{*}\right] /\left[\mathrm{Hi}^{*}\right]$, at equilibrium obtained from measurements made on the CDCl_{3} layer; $R_{\mathrm{a}}{ }^{*}$ equals the ratio, $\left[\mathrm{G}^{*}\right] / \mathrm{Hi}^{*}$], in the CDCl_{3} layer calculated from measurements made on the aqueous layer at equilibrium; A is the observed absorbance of the picrate ion in $\mathrm{CH}_{3} \mathrm{CN} ; \epsilon$ is the extinction coefficient of the picrate ion at 380 nm in $\mathrm{CH}_{3} \mathrm{CN}$; D^{d} is the factor by which the aliquots taken from the CHCl_{3} layer are diluted in $\mathrm{CH}_{3} \mathrm{CN}$ for the K_{d} determination; D^{*} is the factor by which the aliquots taken from the CDCl_{3} layer are diluted in the R^{*} determinations: D is the factor by which aliquots taken from the aqueous layer are diluted in $\mathrm{CH}_{3} \mathrm{CN}$ for the $R_{\mathrm{a}}{ }^{*}$ determination; l is the light path length for the UV cell.

The precisions for $\left[\mathrm{G}_{i}\right]$ and $\left[\mathrm{H}_{i}\right]$ of eq $6-9$ were ± 0.05 and $\pm 0.4 \%$, respectively. The precisions for V^{*} / V of eq 6 and 9 were $\pm 1.7 \%$ for $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}{ }^{+}, \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$, and $t-\mathrm{BuNH}_{3}{ }^{+}$picrates and $\pm 2.2 \%$ for Rb^{+}and Cs^{+}picrates. The precision for all ϵ values was determined by serial dilutions of standard picrate solutions of known concentration and determination of the absorbance of the resulting solutions. Potassium picrate provides an example: 12 standards ranging from 0 to $1.00 \times 10^{-4} \mathrm{M}$ were formed by serial dilution of a $5.00 \times$ $10^{-4} \mathrm{M}$ solution of K^{+}picrate ${ }^{-}$in $\mathrm{CH}_{3} \mathrm{CN}$. A plot of absorbance vs. concentration gave $\epsilon 16900 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$ with $r=1.0000$. The standard deviation of the ϵ 's of the 11 samples other than the blank was ± 570 $\mathrm{cm}^{-1} \mathrm{M}^{-1}$, or $\pm 3.4 \%$. The ϵ values for $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$, and Cs^{+} were all the same. The ϵ value for $\mathrm{NH}_{4}+$ picrate was $17700 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$ $\pm 3.4 \%$, and for $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$and $t-\mathrm{BuNH}_{3}{ }^{+}$picrates- were 17400
$\mathrm{cm}^{-1} \mathrm{M}^{-1} \pm 3.4 \%$. The precision for D^{d} was $\pm 0.5 \%$, and for $/$ was $\pm 0.1 \%$. The error in A was trivial compared to the others. The overall precision for K_{d} for all the guests was about $\pm 4.2 \%$. The precision for D^{*} was $\pm 1.4 \%$. Thus the precision for R^{*} was $\pm 4.9 \%$. The precision for D was $\pm 0.9 \%$. The precision of $R_{\mathrm{a}}{ }^{*}$ varied with the magnitude of A. For example, with $A=0.499,0.339,0.236$, and 0.122 , the precisions for $R_{\mathrm{a}}{ }^{*}$ were $\pm 280, \pm 11, \pm 5.9$, and $\pm 3.6 \%$, respectively. This analysis indicates that the highest precision for $R_{\mathrm{a}}{ }^{*}$ occurred with A lower than 0.2.
The precision of K_{a} varied with R^{*} values, and, therefore, whether they were determined from the CDCl_{3} or $\mathrm{H}_{2} \mathrm{O}$ layer. For example, for $R^{*}(\pm 4.9 \%)$ of $7.04 \times 10^{-3}, 0.308$, and 0.720 , the precisions for K_{a} became $\pm 14, \pm 21$, and 54%, respectively. The maximum precision for any K_{a} value was $\pm 14 \%$. Corresponding $-\Delta G^{\circ}$ precisions (see eq 5) were $\pm 1.4, \pm 1.6$, and $\pm 3.0 \%$ at $25^{\circ} \mathrm{C}$. When $R_{\mathrm{a}}{ }^{*}$ values of 0.315 ± 11 and $0.740 \pm 3.6 \%$ were used in eq 6 in place of R^{*} values. $K_{\text {a }}$ values had precisions of 39 and 47%, respectively. Corresponding $-\Delta G^{\circ}$ precisions were ± 3.1 and $\pm 2.6 \%$. This apparent inverse relationship between the precisions in K_{a} and $-\Delta G^{\circ}$ arises out of the fact that, when K_{a} is high valued, a large $\% K_{\mathrm{a}}$ error translates to a small relative $-\Delta G^{\circ}$ error owing to the correspondingly high magnitude of $-\Delta G^{\circ}$.
Several control experiments were conducted. In the first, a 4.895 $\times 10^{-5} \mathrm{M}$ solution of potassium picrate in $\mathrm{CH}_{3} \mathrm{CN}$ was prepared, and absorbance measurements were made at 380 nm . A $10-\mu \mathrm{L}$ sample of 0.075 M host $\left(\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{D}$ (OEOEO) $\mathrm{E}(6)$ in CDCl_{3} was then diluted to 5 mL with the same potassium picrate solution (corresponding to $R=0.326$) and absorbance again was measured. The difference between the two measurements was 1.2%. Similarly, a 9.79×10^{-5} M potassium picrate solution was utilized for the same experiment with the same host (corresponding to $R=0.652$). In this case the difference was 0.5%.

In a second control experiment, a $100-\mu \mathrm{L}$ sample of a 0.075 M solution of host $\left(\mathrm{UrCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{E}$ (11) in CDCl_{3} was equilibrated in the usual way with 0.50 mL of a 0.0156 M aqueous potassium picrate solution. The phases were separated, and aliquots were removed with syringes (s) or micropipets (m) and diluted to their final volumes (V_{f}) with $\mathrm{CH}_{3} \mathrm{CN}$. Absorbance values (A) were measured at 380 nm with the results shown in Table IV.

References and Notes

(1) The authors thank the Division of Basic Sciences of the Department of Energy for a contract (AT(04-3)34, P.A. 218), which supported this research.
(2) (a) S. S. Moore, T. L. Tarnowski, M. Newcomb, and D. J. Cram, J. Am. Chem. Soc., 99, 6398-6405 (1977); (b) M. Newcomb, S. S. Moore, and D. J. Cram, ibid, 99, 6405-6410 (1977); (c) R. C. Helgeson, T. L. Tarnowski, J. M. Timko, and D. J. Cram, ibid., 99, 6411-6418 (1977); (d) K. E. Koenig, G. M. Lein, P. Stückler, T. Kaneda, and D. J. Cram, ibid., 101, 3553-3566 (1979); (e) L. J. Kaplan. G. R. Weisman, and D. J. Cram, J. Org. Chem., in press.
(3) (a) A. A. Alberts and D. J. Cram, J. Am. Chem. Soc., 101, 3545-3553 (1979); (b) D. J. Cram, R. C. Helgeson, K. Koga, E. P. Kyba, K. Madan. L. R. Sousa, M. G. Siegel, P. Moreau, G. W. Gokel, J. M. Timko, and G. D. Y. Sogah, J. Org. Chem., 43, 2758-2772 (1978).
(4) For another type of "jaws" host, see T. L. Tarnowski and D. J. Cram, J. Chem. Soc., Chem. Commun., 661-663 (1976).
(5) E. P. Kyba, R. C. Helgeson, K. Madan, G. W. Gokel, T. L. Tarnowski, S. S. Moore, and D. J. Cram, J. Am. Chem. Soc., 99, 2564-2571 (1977).
(6) D. J. Cram, R. C. Helgeson, S. C. Peacock, L. J. Kaplan, L. A. Domeier, P. Moreau, K. Koga, J. M. Mayer, Y. Chao, M. G. Siegel. D. H. Hoffman, and G. D. Y. Sogah, J. Org. Chem., 43, 1930-1946 (1978).
(7) M. Harfenist, A. Baviey, and W. A. Lazier, J. Org. Chem., 19. 1608-1616 (1954).
(8) E. J. Corey, N. W. Gilman, and B. E. Ganem, J. Am. Chem. Soc., 90, 5616-5617 (1968).
(9) T. Van Es, J. Chem. Soc., 1564 (1965).
(10) J. J. Fox and D. Van Praag, J. Am. Chem. Soc., 82, 486-489 (1960).
(11) M. Carmack and C. J. Kelley, J. Org. Chem., 33, 2171-2173 (1968).
(12) P. W. Feit, J. Med. Chem, 7, 14-17 (1964).
(13) (a) J. P. Behr, J. M. Lehn, and P. Vierling, J. Chem. Soc., Chem. Commun., 621-623 (1976); (b) J. M. Girodeau, J. M. Lehn, and J. P. Sauvage, Angew. Chem., Int. Ed. Engl., 14, 764 (1975); (c) W. D. Curtis, D. A. Laidier, J. F. Stoddart, and G. H. Jones, J. Chem. Soc., Chem. Commun, 833-835 (1975).
(14) H. Moureu, P. Chovin, and R. Sobourin, Bull. Soc. Chim. Fr., 1090-1094 (1964).
(15) D. J. Cram and F. A. Abd Elhafez, J. Am. Chem. Soc., 74, 5828-5835 (1952).
(16) J. M. Mayer and D. J. Cram, unpublished results.
(17) S. C. Peacock, L. A. Domeier, F. C. A. Gaeta, R. C. Helgeson, J. M. Timko, and D. J. Cram. J. Am. Chem. Soc., in press.
(18) D. Live and S. I. Chan, J. Am. Chem. Soc., 98. 3769-3778 (1976).
(19) The authors are grateful to Dr. Israel Goldberg for information regarding this structure in advance of publication.
(20) The authors are grateful to Dr. Kenneth N. Trueblood for information regarding these structures in advance of publication. The structure of the complex of 18 -crown-6 is not yet refined.
(21) P. R. Bevington, "Data Reduction and Error Analysis for the Physical Sciences", McGraw-Hill, New York, 1969, pp 60-64.

Host-Guest Complexation. 20. Chiral Recognition in Transport as a Molecular Basis for a Catalytic Resolving Machine ${ }^{1,2}$

Martin Newcomb, John L. Toner, Roger C. HeIgeson, and DonaId J. Cram*
Contribution from the Department of Chemistry, University of California, Los Angeles, California 90024. Received January 17, 1979

Abstract

Enantiomer differentiation (chiral recognition) occurred when designed, chiral hosts complexed and carried racemic amine salt guests from one aqueous solution through chloroform to a second aqueous solution where the guests were released. Optically pure hosts examined were 22 -membered ring systems containing six roughly coplanar ether oxygens regularly spaced by attachment to one another through four ethylene (E) units. Two 1, ''-dinaphthyl (D) units of identical configuration, attached to oxygens at their $2,2^{\prime}$ positions, provided chiral barriers in the cycles. Besides the parent host, $\mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{D}(1)$, two others were examined in which one of the dinaphthyl units was substituted in its $3,3^{\prime}$ positions to give $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{D}$ (2) and $\left(\mathrm{ClCH}_{2}\right)_{2} \mathrm{D}(\mathrm{OEOEO})_{2} \mathrm{D}(3)$. Chloroform solutions of these hosts $(0.027 \mathrm{M})$, stirred at $24^{\circ} \mathrm{C}$ in the bottom of a U tube, contacted aqueous layers in the two arms. The solution in the α arm was $0.80 \mathrm{M} \mathrm{in} \mathrm{LiPF}_{6}, 0.08 \mathrm{M}$ in HCl , and $0.05-0.28$ M in guest $* \mathrm{RNH}_{3} \mathrm{Cl}$ or ${ }^{*} \mathrm{RNH}_{3} \mathrm{Br}$ salt. The aqueous solution in the β arm was 0.10 M in HCl . Guests examined were $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3} \mathrm{Br}(4), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{NH}_{3} \mathrm{Cl}(5)$, and $p-\mathrm{HOC}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{NH}_{3} \mathrm{Cl}(6)$. Rate constants for transport were measured for the faster moving A enantiomer $\left(k_{\mathrm{A}}{ }^{*}\right)$ and the slower moving B enantiomer $\left(k_{\mathrm{B}}{ }^{*}\right)$. Values of $k_{\mathrm{A}}{ }^{*} / k_{\mathrm{B}}{ }^{*}$ varied from 1.45 (host 1 and guest 4) to 10 (host 2 and guest 5) and correlated roughly with D_{A} / D_{B} values, where D_{A} was the distribution coefficient of the more and D_{B} that of the less complexed enantiomer drawn from the aqueous into chloroform phases in one-plate extraction experiments. Hosts 2 and $\mathbf{3}$, with their chiral barriers extended with CH_{3} or ClCH_{2} substituents, and the amino ester guests (5 and 6) gave the greatest chiral recognition in transport. The direction of the configurational bias in complexation corresponded to expectations based on scale molecular model examination of the diastereomeric complexes. A W-tube was designed for continuous and simultaneous removal of each enantiomer of racemic 5 from a central aqueous solution contacting two separate chloroform pools, one containing (S, S)-2 and the second $(R, R)-2$. The enantiomeric guests were delivered to separate aqueous solutions, one in the left-and the other in the right-hand arm of the W -tube. Depending on experimental details, the S, S host delivered L- 5 to the left-hand aqueous pool in optical purities that ranged from 70 to 86%, and the R, R host delivered D-5 to the right-hand aqueous pool in optical purities that ranged from 77 to 90%.

Biological transport of amino acids and their derivatives through lipophilic cell walls, up concentration gradients, is driven by linked $\mathrm{H}^{+}, \mathrm{Na}^{+}$, or K^{+}transport down concentration gradients. ${ }^{3}$ Metal cation transport, made possible by complexation with natural or synthetic host carriers through thin. synthetic membranes and organic bulk liquid membranes, has been studied extensively. ${ }^{4}$ Lipophilic anions or cations in bulk toluene have been found to ion pair and transport amino acids and dipeptides from one aqueous solution to another. ${ }^{5}$ The first example of chiral recognition in the differential transport (factors of 1.5 to >10) of enantiomeric guests through lipophilic media by complexation with chiral lipophilic hosts was reported in 1974. ${ }^{2}$ The complexes were structured by hydrogen bonding of amine or amino ester salts to optically active macrocyclic ethers. A second example. communicated in 1975, ${ }^{6}$ made use of optically active N-(1-naphthyl) methyl-α-phenylethylammonium ion paired differentially with the enantiomers of mandelic acid anion (factors of 1.22-1.42). ${ }^{7}$
The present paper ${ }^{2}$ reports the results of experiments in which optically pure host compounds $\mathbf{1 - 3}$ selectively transport the enantiomers of guest salts 4-6 from one aqueous solution


```
1, \(A=H\), or \(O(O E O E O)_{2} 0\)
2, \(A=\mathrm{CH}_{3}\), or \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{O}\)
3. \(A=\mathrm{ClCH}_{2}\), or \(\left(\mathrm{ClCH}_{2}\right)_{2} \mathrm{O}(\mathrm{OEOEO})_{2} \mathrm{D}\)
\(\mathrm{R}-\mathrm{ZC}_{6} \mathrm{H}_{4}-\stackrel{\mathrm{E}}{\mathrm{E}} \mathrm{H}+\mathrm{R}\)
4. \(z=H, R=\mathrm{CH}_{3}\)
\(\stackrel{5}{2}, Z=H, R=\mathrm{CO}_{2} \mathrm{CH}_{3}\)
\(\underline{6}, z=\mathrm{HO}, R=\mathrm{CO}_{2} \mathrm{CH}_{3}\)
```

